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Abstract    The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which
CO2 is the most important one responsible for radiative forcing of the climate. In order to reduce the great estimation uncertainty
of atmospheric CO2 concentrations, several CO2-related satellites have been successfully launched and many future greenhouse
gas monitoring missions are planned. In this paper, we review the development of CO2 retrieval algorithms, spatial interpolation
methods and ground observations. The main findings include: 1) current CO2 retrieval algorithms only partially account for
atmospheric scattering effects; 2) the accurate estimation of the vertical profile of greenhouse gas concentrations is a long-term
challenge for remote sensing techniques; 3) ground-based observations are too sparse to accurately infer CO2 concentrations on
regional scales; and 4) accuracy is the primary challenge of satellite estimation of CO2 concentrations. These findings, taken
as a whole, point to the need to develop a high accuracy method for simulation of carbon sources and sinks on the basis of the
fundamental theorem of Earth’s surface modelling, which is able to efficiently fuse space- and ground-based measurements on the
one hand and work with atmospheric transport models on the other hand.
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1.         Introduction
The rising atmospheric CO2 concentration is believed to
be the primary cause of global climate change (Meehl and
Washington, 1996; West and Marland, 2002; Buchwitz et
al., 2006). For CO2 stabilization at 450, 550, or 650 ppm,
corresponding ranges of global warming over the next 100
years are about 1.2‒2.3, 1.5‒2.9, and 1.7‒3.2°C, respectively
(O’Neill and Oppenheimer, 2002). To keep the increase of
global mean temperature at the 2°C level and to minimize
the risk of extensive negative impacts of climate change,
CO2-concentrations in the Earth’s atmosphere should be

*Corresponding author (email: yue@lreis.ac.cn)

stabilized at the 400–450 ppm level (Wigley et al., 1996;
Moss et al., 2008; Oberheitmann, 2010, 2013). Unfortu-
nately, the average CO2-concentration has increased from
344 ppm in 1984 to 396 ppm in 2013, while the average
CO2-concentration was 281 ppm during the 17th and 18th
centuries (Pearman et al., 1986). CO2-emissions are still
growing at a rate of 1.75 ppm per year.
The emission estimates of CO2 have large uncertainties.

For instance, there was a 16.9% average absolute difference
for emission estimates of power plants from the U.S. Depart-
ment of Energy’s Energy Information Administration (EIA)
and the U.S. Environmental Protection Agency’s GRID data-
base (Ackerman and Sundquist, 2008). For the EU-25 na-
tions, emission uncertainty was 7% when comparing four in-
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ventory methods (Ciais et al., 2010). For China, the uncer-
tainty was between 15% and 20% when including both fossil
fuel consumption and cement production (Gregg et al., 2008).
Insufficient knowledge of CO2 leads to large uncertainties in
future climate predictions because CO2 observations are spa-
tially and temporally limited around the globe (Yoshida et al.,
2011). The climatological, ecological, and social impacts as-
sociated with any given level of atmospheric CO2 concentra-
tions are still uncertain; and the equilibrium impact on global
temperature of a doubling of the CO2 concentration alone is
estimated by the Intergovernmental Panel on Climate Change
(IPCC) to at least have an uncertainty of 3°C (IPCC, 2013).
Three approaches, which are space-based observations,

ground observations, and simulations, have been used to
characterize the spatio-temporal variability of CO2 concen-
trations. This paper describes the typical workflows along
with the strengths and weaknesses of the various approaches
and what would be needed to use all three approaches to-
gether.

2.         Space-based observations

2.1         Carbon related satellites

Satellite measurement is one of the most effective approaches
to monitoring the global distributions of greenhouse gases at
high spatiotemporal resolution and is expected to improve the
accuracy of source and sink estimates of these gases (Rayner
and O’Brien, 2001). Two satellites, Japan’s Greenhouse
Gases Observing Satellite (GOSAT) and NASA’s Orbiting
Carbon Observatory (OCO), have been designed specifically
to measure the column-averaged dry air mole fraction of CO2

(XCO2).
The Japanese Aerospace Exploration Agency (JAXA)

successfully launched GOSAT in January 2009. Although
NASA’s OCO-1 satellite was lost due to launch failure in
February 2009, OCO-2 was successfully launched in July
2014 with an instrument that is almost an exact copy of the
OCO-1 instrument. Immediately after the loss of OCO-1,
the GOSAT Project Team in Japan invited the NASA’s
OCO team to contribute to the GOSAT’s TANSO-FTS data
analysis and NASA has reconstituted the OCO team as the
Atmospheric CO2 Observations from Space (ACOS) Task
Force to support this collaboration.
The scanning imaging absorption spectrometer for atmo-

spheric chartography (SCIAMACHY) on board the European
Space Agency’s ENVISAT-1 satellite provided the first satel-
lite-based estimates of the global distribution of the CO2 col-
umn abundance from space from March 2002 to April 2012.
SCIAMACHY is a passive hyper-spectral spectrometer de-
signed to investigate tropospheric and stratospheric compo-
sition and processes (Bovensmann et al., 1999). The near-
infrared nadir spectra of reflected solar radiation measured by

SCIAMACHY contains information on the vertical columns
of these gases, which was retrieved by using a weighting
function combined with a modified differential optical ab-
sorption spectroscopy (WFM-DOAS) approach. The hori-
zontal resolution of the nadir measurements depends on both
the orbital position and spectral interval but is typically 60 km
for CO2.
In addition to SCIAMACHY, GOSAT and OCO, many

other satellite missions, such as the Infrared Atmospheric
Sounding Interferometer (IASI), Atmospheric Infrared
Sounder (AIRS), and Tropospheric Emission Spectrometer
(TES), provide the ability to monitor global carbon dioxide
concentrations at coarse spatial resolutions (Dennison et al.,
2013). IASI was launched onboard the European MetOp
platform in October 2006 and provided the first global maps
of CO2 concentrations in the cloud-free upper troposphere
(Crevoisier et al., 2009). AIRS was launched on the Aqua
satellite of the Earth Observing System (EOS) in May 2002
(Aumann et al., 2003), and has been used to investigate the
variability of mid-tropospheric CO2 over the entire globe
(Jiang et al., 2010). TES was launched on the EOS Aura
satellite in 2004 and has been used to provide global maps of
tropospheric ozone and its photochemical precursors.
In order to extend the satellite CO2 global time series after

SCIAMACHY,GOSAT andOCO-2, many future greenhouse
gas monitoring missions are planned, including TanSat, Car-
bonSat, MERLIN, Sentinel-5p, MicroCarb and ASCENDS.
The TanSat mission is the first mini-satellite dedicated to

carbon dioxide (CO2) detection and monitoring, and will be
launched by China in 2016. This satellite will focus on the
CO2 variation on seasonal time scales. Its scientific goal is
to improve the understanding on the global CO2 distribution
and the contribution of CO2 to climate change.
The Carbon Monitoring Satellite (CarbonSat), which will

be launched around 2020, will provide data with a spatial res-
olution better than 2 km×2 km using a 500 km swath width.
There will be no gaps between adjacent (across-track and
along-track) ground pixels. The primary goal of the Car-
bonSat mission is to determine and separate natural and an-
thropogenic CO2 and CH4 sources and sinks (Buchwitz et al.,
2013).
The French-German satellite mission MERLIN (Methane

Remote Sensing Lidar Mission) will be launched in 2019.
This mission will provide spatial and temporal gradients of
atmospheric methane (CH4) columns with high precision and
unprecedented accuracy on a global scale.
Sentinel-5P is an approved LEO pre-operational mission

within the European GMES (Global Monitoring for Environ-
ment and Security) program, a collaborative effort of the ESA
and NSO (Netherlands Space Office). The launch of the Sen-
tinel-5 mission is planned for 2020 and will provide measure-
ments of ozone, NO2, SO2, formaldehyde, aerosol, carbon
monoxide, methane, and clouds. The MicroCarb mission to
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be launched by the French Space Agency in 2018 will mea-
sure XCO2 to quantify CO2 surface fluxes over the globe at
regional scales, to identify and monitor global carbon sources
and sinks, and to better understand the CO2 mechanisms op-
erating in oceans and vegetation.
The ASCENDS (Active Sensing of CO2 Emissions over

Nights, Days, and Seasons) platform will provide measure-
ments by day, when photosynthesis occurs, as well as at night,
when plant respiration dominates. Simply going from a sin-
gle daily measurement to two readings, one taken by day and
the other at night, can provide a greatly improved picture of
CO2 fluxes. This platform will be launched by NASA some-
time between 2023 and 2026.
The current and planned carbon-related satellites referred to

above measure the near-infrared (NIR) nadir spectra that con-
tain information about atmospheric trace gases such as CO2

and CH4. To gather a more complete picture of CO2 fluxes
and concentrations, retrieval algorithms must be developed
to retrieve the total column amounts of the atmospheric trace
gases from the NIR nadir spectra and the various approaches
that have been proposed to date are reviewed next.

2.2         Retrieval algorithms

At present, there are nine different retrieval algorithmsworld-
wide: 1) the weighting function modified differential opti-
cal absorption spectroscopy approach (WFM-DOAS); 2) the
Bremen optimal Estimation DOAS (BESD) approach; 3) the
National Institute for Environmental Studies (NIES) algo-
rithm; 4) the photon path-length probability density function
(PPDF); 5) the Atmospheric CO2 Observations from Space
(ACOS) approach; 6) the University of Leicester Full Physics
(UoL-FP) algorithm; 7) the RemoTeC approach; 8) the sim-
ple empirical CO2 model (SECM); and 9) the ensemble me-
dian algorithm (EMMA).
The WFM-DOAS is an unconstrained linear least squares

method based on scaling (or shifting) preselected vertical pro-
files, developed for the scanning imaging absorption spec-
trometer for atmospheric chartography (SCIAMACHY) on
board the European Space Agency Envisat-1 satellite (Buch-
witz et al., 2000, 2006). The reference spectra of the linear
fit include the trace gas total column weighting functions,
a weighting function for a temperature profile shift, and a
low-order polynomial. The logarithm of a linearized radia-
tive transfer model plus a low-order polynomial is fitted to
the observed sun-normalized radiance. WFM-DOASwas im-
proved by additionally using the SCIAMACHY M-factors
that are multiplicative factors linked to the absolute radio-
metric calibration (Schneising et al., 2008). The application
of the M-factors to compensate for detector degradation en-
sures better XCO2 results for characterizing long-term behav-
ior. Without the consideration of the M-factors, the XCO2

growth rate would be biased low by a few tenths of 1 ppm

(Schneising et al., 2011, 2012). WFM-DOAS has been fur-
ther improved by using both a constant aerosol vertical profile
for the radiative transfer simulations and a cloud detection al-
gorithm (Heymann et al., 2012).
The Bremen optimal Estimation DOAS (BESD) algo-

rithm combines optimal estimation (Rodgers, 2000) and
WFM-DOAS (Buchwitz et al., 2000) to retrieve CO2 from
SCIAMACHY (Reuter et al., 2010). The BESD/C algorithm
to be used for CarbonSat is similar but not exactly identi-
cal to the BESD algorithm used for SCIAMACHY XCO2

retrieval with respect to some of the state vector elements
(Bovensmann et al., 2010). BESD/C is also based on optimal
estimation and uses a priori information to constrain the
retrieval. To improve the computation speed of random and
systematic XCO2 and XCH4 errors, an error parameterization
method was developed as a function of several critical input
parameters such as aerosol optical depth, cirrus optical depth
and cirrus altitude (Buchwitz et al., 2013). BESD/C has been
used to retrieve XCO2 and XCH4 as well as the terrestrial
vegetation chlorophyll fluorescence (VCF) emissions that
need to be considered for accurate XCO2 retrieval (Franken-
berg et al., 2012; Joiner et al., 2011).
Japan’s National Institute for Environmental Studies

(NIES) has developed a retrieval algorithm for column abun-
dances of CO2 and CH4 from the short-wavelength infrared
spectra obtained using the Thermal And Near infrared Sensor
for carbon Observation-Fourier Transform Spectrometer
(TANSO-FTS) (Yoshida et al., 2011). The NIES algorithm
for GOSAT is also based on this optimal estimation method
(Rodgers, 2000). The NIES algorithm includes an unbiased
cloud detection algorithm (Ishida and Nakajima, 2009) and
the spectral regions of the 1.6 μm CO2, 1.67 μm CH4, 0.76
μm O2 absorption bands are then used for the retrieval. NIES
was recently improved by replacing the solar irradiance data-
base, improving the optical properties of aerosols, changing
the handling of the aerosol vertical profile and removing the
surface pressure bias by scaling the absorption cross section
of O2 (Yoshida et al., 2013).
A parameterization method incorporating the photon path-

length probability density function (PPDF) has also been de-
veloped, which accounts for thin clouds in CO2 retrieval from
space-based reflected sunlight observations in near-infrared
regions (Oshchepkov et al., 2008). The parameterization of
the cloud effects are based on a statistical analysis of pho-
ton trajectories simulated using Monte Carlo techniques (Bril
et al., 2007). The PPDF-based method mimics DOAS when
light path modifications are neglected (Oshchepkov et al.,
2012).
The fifth of the aforementioned list ofmethods, NASA’sAt-

mospheric CO2 Observations from Space (ACOS) algorithm,
was originally developed for the OCO instrument. This algo-
rithm also employs an optimal estimation approach, in which
the input parameters of a forward model are optimized to
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yield simulated spectra that best match the observed spec-
tra, whilst simultaneously being constrained by prior infor-
mation (Rodgers, 2000; Crisp et al., 2012). The ACOS algo-
rithm, being tested on GOSAT data, will work with OCO-2
data. It only uses information from the narrower OCO-2 win-
dows within the GOSAT spectra, and does not use Cloud and
Aerosol Imager (CAI) data except for validation. In other
words, OCO-2 does not detect cloudy scenes, but GOSAT
does (O’Dell et al., 2012).
The University of Leicester Full Physics (UoL-FP) algo-

rithm includes a forwardmodel and an inversemethod (Bösch
et al., 2006). The forward model consists of a radiative trans-
fer code, a solar model, and an instrument model, whereas the
inverse method is based on the optimal estimation technique
(Rodgers, 2000). The UoL-FP algorithm was developed to
retrieve XCO2 from a simultaneous fit of the near-infrared O2

band spectrum at 0.76 μm and the CO2 bands at 1.61 and 2.06
μm as measured by the OCO-2 instrument. The UOL-FP and
ACOS algorithms represent two parallel developments based
on the OCO algorithm and thus both algorithms follow a sim-
ilar retrieval strategy. Both retrieval algorithms differ in their
definition of the state vector, a priori values and covariances,
and especially in the treatment of aerosols and cirrus clouds
(Cogan et al., 2012).
RemoTeC is a retrieval approach that allows for the re-

trieval of a few effective aerosol parameters simultaneously
with the CO2 total column by parameterizing particle amount,
height distribution, and microphysical properties (Butz et al.,
2009). Light path modification due to scattering by aerosols
and cirrus clouds has been identified as a major source of er-
ror when retrieving XCO2 from solar near-infrared backscat-
ter measurements (O’Brien and Rayner, 2002; Dufour and
Bréon, 2003). The key quality of RemoTeC is its ability
to simultaneously retrieve gas concentrations and the parti-
cle scattering properties of the atmosphere using an efficient
radiative transfer model (Hasekamp and Butz, 2008). Par-
ticle scattering properties are effectively parameterized by a
single spherical particle type characterized through its total
column number density, the size distribution parameter, the
height distribution parameter (Butz et al., 2011).
SECM was developed to simulate atmospheric CO2 back-

ground concentrations in the form of mixing ratio profiles
and XCO2. SECM is based on a simple equation incorporat-
ing 17 empirical parameters, latitude, and date. The empiri-
cal parameters were determined by the National Oceanic and
Atmospheric Administration’s (NOAA) CarbonTracker (Ver-
sion 2010) least squares fitting to assimilation system (Reuter
et al., 2012). SECM, depending only on date and latitude,
can explain more than 94% of the variability in current atmo-
spheric CO2 concentrations. The atmospheric CO2 profiles
simulated by SECM have a linear pressure dependency with
different slopes in the troposphere and stratosphere. SECM
can be used as a priori knowledge in an optimal estimation

framework without additional external information.
Several groups have shown that an ensemble mean,

weighted mean, or median can outperform each of the
eight aforementioned individual models under appropriate
conditions (Kharin and Zwiers, 2002; Vautard et al., 2009).
Given this state of affairs, Reuter et al. (2013) developed
the ninth and final retrieval method, EMMA, to combine
WFM-DOAS, BESD, NIES, NIES-PPDF, ACOS, UoL-FP
and RemoTeC results into one new dataset. The basic prin-
ciples incorporated in these seven algorithms are the same
and can be summarized as follows: 1) a satellite instrument
measures backscattered solar radiation in the near-infrared
O2 and CO2 absorption bands; 2) a radiative transfer plus
forward model is utilized to simulate the satellite measure-
ment for a known parameter vector and an unknown state
vector; 3) an inversion method is employed to find the state
vector which results in the best agreement between simulated
and measured radiances; and 4) the retrieved state vector is
assumed to represent the most likely atmospheric state.
However, the seven methods are based on: 1) different ab-

sorption bands; 2) different inversion methods such as opti-
mal estimation, Tikhonov-Phillips and least squares; 3) dif-
ferent physical assumptions on the radiative transfer in scat-
tering atmospheres; and 4) different pre- and post-processing
filters (e.g., cloud detection from the O2-A band or from a
cloud and aerosol imager). The EMMA ensemble approach
builds a database of individual level-2 retrieval estimates and
takes advantage of the variety of different retrieval algorithms
and their independent development under an assumption that
it is unlikely that the majority of algorithms produce outliers
in the same directions.

2.3         Challenges of the retrieval algorithms

The retrievals from different algorithms are not completely
comparable because of the lack of international standards for
CO2 retrieval. For instance, the XCO2 estimated with dif-
ferent retrieval algorithms will vary slightly depending on
how the vertical weighting is computed. The OCO retrieval
algorithm weights CO2 concentrations by pressure (Connor
et al., 2008), whereas a SCIAMACHY CO2 retrieval algo-
rithm weights CO2 concentrations by the total number of air
molecules (Reuter et al., 2010) and the dry air component
(Wunch et al., 2010).
Similarly, algorithms based on Differential Optical Ab-

sorption Spectroscopy (DOAS) in the absence of atmospheric
scattering rely on absorption-only techniques (Buchwitz
et al., 2000). For the retrieval of SCIAMACHY data,
aerosol scenarios and surface albedo are assumed for the
DOAS-based algorithms (Buchwitz et al., 2000). It can
usually retrieve reasonably accurate values of XCO2; how-
ever, when the actual equivalent optical path length differs
from the assumed path length, large errors will appear in
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the retrieved results. Neglecting scattering can lead to un-
acceptably large retrieval errors when optically thin clouds
or aerosols are present (Butz et al., 2009; Houweling et al.,
2005; Aben et al., 2007).
The PPDF-based retrieval (Oshchepkov et al., 2008, 2009),

and NIES algorithms (Yoshida et al., 2011) for GOSAT have
tried to account for scattering effects in the retrieval of CO2.
However, tests to prove their efficacy in accounting for these
scattering effects are sometimes incomplete. This shortcom-
ing might be partly due to light-path modification not only
depending on the particle amount but also on particle size and
height (Butz et al., 2011).
Three types of vertical structures have been observed: 1)

CO2 concentration changed little with altitude; 2) CO2 con-
centrations showed a turning point at certain altitudes and
then decreased above that; and 3) CO2 concentrations showed
a clear monotonic decrease with altitude (Li et al., 2014). It
was inferred that in the low troposphere, the vertical structure
of CO2 distribution mainly depends on source emission vari-
ations at the ground, as well as vertical and horizontal trans-
port of air masses due to meteorological processes. A type
of neural network known as a multilayer perceptron with two
hidden layers of neurons and a hyperbolic tangent as activa-
tion functions was applied to retrieval of CO2 vertical profiles
and its column-averaged concentration by reflected solar ra-
diation from GOSAT. It achieved an accuracy of better than
1 ppm for column-averaged values and better than 4 ppm for
the surface CO2 concentration (Gribanov et al., 2010). Ide-
ally, a vertical profile of the greenhouse gases concentrations
would be desirable. Indeed, a full knowledge of the vertical
distribution brings additional information on the locations of
sources and sinks. However, none of the currently envisioned
remote sensing techniques allows the retrieval of such verti-
cal distributions (Bréon and Ciais, 2010).

2.4         Interpolation

Describing the spatial and/or temporal distribution of atmo-
spheric CO2 through curve fitting or regression has a long
tradition in the in situ measurement community (Reuter et
al., 2012). For instance, Komhyr et al. (1985) applied the
spline fitting technique to surface-based CO2 measurements
of NOAA’s flask sampling network in order to analyze the
latitudinal distribution and temporal evolution of atmospheric
CO2 concentrations. Lancaster and Salkauskas (1986) devel-
oped a polynomial spline interpolation for surface fitting and
Kobza and Mlčák (1994) constructed a spline surface from
known mean values on a rectangular lattice. Masarie and
Tans (1995) developed a spatial and temporal interpolation
and extrapolation scheme for NOAA’s flask sampling net-
work utilizing individual site records as reference time series.
A parabolic spline method was developed in order to create
regional trace gas maps from satellite observations, in which

the spline coefficients are computed using one-dimensional
splines, which allow for fast computation for a large number
of pixels (Kuhlmann et al., 2014).
Vertical column densities of trace gases, retrieved from the

NIR nadir spectra of the satellite measurements, are typi-
cally expressed in the instrument’s frame of reference using
across- and along-track positions. To get a surface of a trace
gas, the aforementioned level-2 products have to be projected
on a longitude-latitude grid using a suitable gridding method
to produce a level-3 product (Kuhlmann et al., 2014). Sev-
eral approaches have been developed to create full-coverage
(i.e., Level-3) maps of column-averaged CO2 concentrations
(XCO2) fromACOS products. For instance, moving averages
were used to generate geographical distribution maps of up-
per tropospheric CO2 at spatial resolutions of 5°×5° in 2008
retrieved from IASI observations (Crevoisier et al., 2009).
The simple average was employed to map CO2 surfaces at
spatial resolutions of 10°×10° from the TES (Kulawik et al.,
2010). Kriging was applied to generate Level-3 maps of
XCO2 at a spatial resolution of 1°×1.25°, which are derived
directly from the Level-2 observations covering the second
half of 2009 (Hammerling et al., 2012a, 2012b). And fi-
nally, a method for high accuracy surface modelling (HASM)
was used to create full-coverage maps of column-averaged
CO2 concentrations (XCO2) from ACOS product (Yue et al.,
2015).

3.         Ground-based observations

The Total CarbonColumnObservingNetwork (TCCON)was
established in 2004 with a primary focus on measuring pre-
cise and accurate columns of CO2. TCCON is a ground-based
network of Fourier transform spectrometers (FTSs) designed
to retrieve accurate column abundances of CO2, CH4, N2O
and CO from near-infrared (NIR) solar absorption spectra.
There are 26 sites currently. The scientific goals of the net-
work are to improve the understanding of the carbon cycle, to
provide the primary validation dataset for retrieval of XCO2

and XCH4 from space-based instruments, and to provide a
transfer standard between the satellite measurements and the
ground-based in situ network (Wunch et al., 2011). XCO2 is
insensitive to variations in surface pressure and atmospheric
water vapor. It is much less affected by vertical transport than
surface in situ measurements because the column vertically
integrates the concentration of CO2 above the surface. In con-
trast to the reflected sun observations of the space-based sen-
sors, the accuracy of the retrieval from the TCCON spectra
is minimally influenced by aerosols, uncertainty in air-mass
or variations in land surface properties. Therefore, the hori-
zontal gradients in measured XCO2 are more directly related
to the underlying regional-scale fluxes than is the case for the
surface in situ measurements of CO2 (Yang et al., 2007).
A reliable in situ CO2 and CO analysis system has been
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developed at eight of the sites in NOAA’s Earth System Re-
search Laboratory’s (ESRL) Global Greenhouse Gas Refer-
ence Network since the early 1990s. The network uses tele-
vision and radio transmitter towers that are higher than 300
m. The towers are distributed across the US and provide
the basis for prototype CO2 data assimilation systems such
as NOAA’s CarbonTracker system. Observations from tall
towers at several heights along the tower describe the vertical
gradient, which reflects the relative influence of remote and
local sources (Bakwin et al., 1998). Measurements obtained
from sampling levels above 100 m are minimally impacted
by nearby vegetation and other local emissions (Andrews et
al., 2014).
Eddy covariance (EC) systems are frequently used to

quantify exchanges and budgets of carbon dioxide (CO2),
water (H2O), and energy at ecosystem scales as well. A
global network of over 500 EC flux towers called FLUXNET
has been established, which continuously measures the
aforementioned fluxes at a sampling rate of 5–50 Hz across
different ecosystem types (Baldocchi, 2008). FLUXNET
data has been used to predict the spatiotemporal dynamics
of net CO2, H2O, and energy exchanges among the pedo-
sphere, hydrosphere, biosphere, and atmosphere (Stauch
et al., 2008). However, EC time-series data obtained from
flux towers are noisy due to both stochastic and determin-
istic atmospheric turbulence processes, and no standard
data-denoising protocols exist at present. Evrendilek (2014)
recently showed that integration of temporal artificial neural
networks (ANNs) and discrete wavelet transform (DWT)
denoising provided more accurate and precise estimates of
net ecosystem CO2 exchange.
The Comprehensive Observation Network for Trace gases

by Airliner (CONTRAIL) project has been observing ver-
tical CO2 profiles over 43 airports worldwide (Basu et al.,
2014). Automatic Air Sampling Equipment (ASE) and con-
tinuous CO2measuring equipment (CME) are installed on the
racks in the forward cargo compartment of the aircraft. The
CME includes a non-dispersive infrared analyzer, a data log-
ger, and two calibration cylinders for in situ CO2 measure-
ments. The ASE is designed for flask sampling; the instru-
ment, connected to a metal bellows pump, is made up of a
specially designed control board and can accommodate 12
flasks. The CME platform supports high-frequency measure-
ments of CO2 and provides detailed spatial observations over
large areas, whereas ASE provides useful distributions not
only of CO2 but also various trace gas species, as well as their
isotopic ratios. Both sets of sampling equipment are automat-
ically controlled through input of relevant flight parameters
from the aircraft data system (Machida et al., 2008).
Next, we turn our attention to a series of simulation models

that endeavor to combine satellite- and ground-based mea-
surements to predict spatio-temporal variations in CO2 and
other trace gases.

4         Discussion and conclusions

In terms of the fundamental theorem of Earth surface mod-
elling, a CO2 surface can be simulated with HASM when its
spatial resolution is fine enough, which is uniquely defined by
both extrinsic and intrinsic invariants of the surface (Yue et
al., 2016). The intrinsic invariant expresses the information
observed when we stay on the surface, about the details of
the surface. The extrinsic invariant expresses the change of
the surface observed from outside the surface (Yue, 2011). In
other words, a surface of a trace gas cannot be determined by
the satellite-based observations alone, and information from
ground-based observations contributes another essential de-
terminant of the surface. When remotely sensed data from
satellites are available, ground measurements have to be ob-
tained and incorporated before HASM can be used to gen-
erate a more accurate surface. When both remotely sensed
data from satellites and ground measurements are available,
HASM can be used to generate a surface that is more accu-
rate than the one from either the satellite observations or the
ground measurements.
Space-borne observations complement the in situ network

by bringing a high density of measurements over most of
the Earth, including over regions that are difficult to access.
However, generating satisfactory satellite-based estimates of
sources and sinks faces a number of challenges. The pri-
mary one is accuracy. The concentration gradients that are
generated by local sources and sinks are small in compari-
son to the background concentration. A very high relative
accuracy is therefore necessary, and such accuracy is diffi-
cult to achieve from space. Space-based measurements of
CO2 such as SCIAMACHY, GOSAT and OCO have provided
the most realistic opportunity to achieve global coverage at
regional scales. However, these space-based measurements
have rather high scatter and potentially large-scale artifacts
that hinder their use in source-sink estimation; the accuracy
of the current estimates is still not sufficient to improve our
knowledge on carbon sources and sinks (Crisp et al., 2012).
Ground-based observations, on the other hand, include

three ways to estimate the fluxes of CO2: 1) taking direct
measurements from towers above various ecosystems using
eddy covariance methods; 2) sampling carbon stocks at vari-
ous intervals and deducing the flux from the temporal change
in stocks; and 3) relying on atmospheric CO2 concentrations
measured at various stations distributed around the globe.
Despite the continuous expansion of the in situ monitoring
network, it is clear that it will never have the density required
for global monitoring of fluxes at a fine scale. Moreover,
the in situ monitoring network will not be expandable with
adequate density over the oceans, and over large forest
areas that are difficult and costly to access (Bréon and Ciais,
2010). In other words, ground-based observations can give
an excellent picture of the global atmospheric CO2 growth
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rate and even some reasonable information for hemispheric
gradients, but the spatial distribution of these observations is
too sparse to accurately infer CO2 concentrations on regional
scales (O’Dell et al., 2012).
In short, a surface modelling platform for CO2 dynamics

should be constructed to simulate and visualize CO2 concen-
trations. Such a platform would need to incorporate develop-
ing international standards for CO2 retrieval algorithms that
completely account for scattering effects and allow the re-
trieval of CO2 vertical distributions on the one hand and effi-
ciently fuse space- and ground-based measurements and sup-
port coupling with atmospheric transport models on the other
hand. A platform with these characteristics offers the best
hope for modeling spatio-temporal variability in greenhouse
gas concentrations and the relative roles of sources and sinks
across various scales across the globe.
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