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ABSTRACT
Given a set S of sites and a set O of weighted objects located
on a road network, the optimal network location (ONL)
query computes a location on the road network where in-
troducing a new site would maximize the total weight of the
objects that are closer to the new site than to any other
site. The existing solutions for optimal network location
query assume that sites and objects rarely change their loca-
tion over time, whereas there are numerous new applications
with which sites and/or objects frequently change location.
Unfortunately, the existing solutions for optimal network
location query are not applicable to answer such these so-
called dynamic optimal network location queries (DONL),
since the result generated by such solutions is most prob-
ably invalid by the time computation is complete. In this
paper for the first time we formalize the problem of DONL
queries as Continuous Maximal Reverse Nearest Neighbor
(CMaxRNN) queries on spatial networks, and introduce an
approach that allows for efficient and incremental update of
MaxRNN query results on spatial networks. With an exten-
sive experimental study we verify and evaluate the efficiency
of our proposed approach with both synthetic and real-world
datasets.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms

Keywords
Maximal Reverse Nearest Neighbor Query, Dynamic Opti-
mal Location Query, Continuous Query, Spatial Networks
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1. INTRODUCTION
In recent years, optimal location queries (and particularly,

optimal network location queries) have been widely used in
spatial decision support systems and marketing tools. Given
a set S of sites and a set O of weighted objects located on a
road network, the optimal network location query computes
a location on the road network where introducing a new
site would maximize the total weight of the objects that are
closer to the new site than to any other site. For instance,
a city planner can use optimal network location queries to
answer questions such as “where is the optimal location to
open a new public library, such that the number of patrons
in proximity of nearest to the library is maximized?”.

A common and important limitation of the existing solu-
tions for optimal network location query is due to the as-
sumption that sites and objects rarely (if ever) change their
location over time. However, there are numerous real-world
applications where sites and/or objects are moving entities
that frequently change location. Examples of such applica-
tions are food truck location planning, diaster-response facil-
ity location planning, and mobile police unit assignment, to
name a few. For instance, with the food truck location plan-
ning application, food trucks which frequently change their
locations during the day, can use optimal location queries
to determine the best location to stop next (i.e. where they
can serve the most customers). With this application not
only sites (i.e. food trucks) are moving, but also objects
(i.e. customers) change location as they commute through-
out the day. Similarly, with the disaster-response planning
application aid supply, support units (sites) must be placed
(on-the-fly) where they can serve most victims (objects).
Likewise, the demand for aid in different areas is likely to
frequently change over time as inspections identify new vic-
tims and the identified victims receive aid during the disaster
response.

The existing solutions for optimal location query (e.g., see
[12, 21]) consume hours (or tens of minutes at best) to com-
pute the optimal location; nevertheless they are applicable
to classic optimal location applications because the location
of the sites and objects (most probably) remain unchanged
during the query computation. However, with dynamic ap-
plications such as those described above, since sites and/or
objects frequently move, the result generated by such so-
lutions is most probably invalid by the time computation
is complete; hence, these solutions are inapplicable. For
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example, according to the data collected from a real food
truck application with only 32 trucks, one of the trucks may
change location as often as every two minutes, whereas each
run of the optimal location query on average takes about 39
minutes to complete (see Section 8.2 for more details).

To be able to support dynamic applications, one should
avoid computation of the optimal location query from
scratch, and instead, compute the query incrementally to
leverage computations from past queries. We term such
queries Dynamic Optimal Network Location Queries (or
DONL queries, for short). DONL queries continuously pro-
vide optimal network locations by incrementally updating
the result of the query at each time t while as sites and ob-
jects change location over time. We should mention that
while some similar problems have been studied under the
topic of ”dynamic location modeling” by the operations re-
search community, by design their solutions only scale to
problems with very small site and object datasets, and can
only approximate the exact result by applying heuristics (see
Section 2).

In this paper, we formalize DONL queries as Continuous
Maximal Reverse Nearest Neighbor (CMaxRNN) queries on
spatial networks, and present a scalable and exact solution
for CMaxRNN query computation (hereafter, we use the
terms DONL and CMaxRNN interchangeably). We argue
that answering any basic optimal network location query in-
cludes two main components. First, one has to compute a
spatial neighborhood around each (and every) object o of
the given object dataset such that if s is the nearest site to
object o, any new site s′ introduced within the locality of
o will be closer to o as compared to the distance between
s and o. The intersection areas where these neighborhoods
overlap are the best candidate locations to introduce a new
site. Therefore, at the second phase one must compute the
overlap among object neighborhoods and identify the opti-
mal network location, which is a network segment (or a set
of segments) with maximum total weight. This approach is
also applicable to dynamic optimal network location queries.
However, repeating the execution of the two aforementioned
steps for the entire dataset every time a site point moves or
the weight of an object changes, results in a great amount
of computational cost and resource consumption.

Instead, in our proposed approach to avoid redundant
computation we present a framework for incrementally mon-
itoring the MaxRNN queries in spatial networks. We first
precompute a data structure and store the status of the spa-
tial neighborhoods, the overlap among them, and their opti-
mal network location in this data structure. This data struc-
ture is constructed in a way that it supports the CMaxRNN
queries and is efficiently updateable. At any time instant t,
upon receiving an update either in the location of the site
or object points, we leverage the precomputed information
in the initial phase and identify the part of the network that
is impacted by these changes. Then, we update locally the
spatial neighborhood of those objects within this locality.
Thereafter, the status of the overlap among neighborhoods
and the new optimal network location are efficiently updated
and stored in the data structure to be used for future dy-
namic queries.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 formally defines
CMaxRNN queries on spatial networks. In Section 5, we
present our index structure and introduce our proposed ap-

proach, and in Section 7 we present a complexity analysis
of our proposed approach. Section 8 evaluates our proposed
approach via experiments. Finally, Section 9 concludes the
paper and discusses directions for future research.

2. RELATED WORK
Since the pioneering work of Ballou [1], OR (operations

research) researchers have shown continuing interest in dy-
namic location modeling. Such models typically result in a
schedule or plan for opening and/or closing facilities (sites)
at specific times and locations in response to changes in pa-
rameters (e.g., demand of the objects, location/relocation
cost of facilities) over the time horizon. Common dynamic
location/relocation models can deal with single facility [16]
and multiple facilities [17, 10, 5, 7], as well as dynamic loca-
tion/relocation and time-dependent facility location [8, 6],
where the demand changes over time. However, given the
computational complexity of most dynamic location model-
ing problems existing solutions mostly comprise of heuris-
tics that can only “guestimate” the optimal location with-
out any guaranteed error bounds. More importantly, due to
their computational complexity these solutions/models fail
to scale with real datasets that often consist of large num-
bers of sites and objects.

On the other hand, given similar scalability issues with
existing solutions for the generic family of “location prob-
lems”, recently the database community has shown interest
in developing scalable solutions for these problems. How-
ever, to the best of our knowledge, we are the first to in-
troduce and address the CMaxRNN (or DONL) problem,
providing a solution which is both exact and scalable. Be-
low, we review the two closest types of related (but orthog-
onal) location problems that are previously studied by the
database community; namely, the problem of maximal re-
verse nearest neighbor (MaxRNN), which assumes static site
and object datasets, and the problem of continuous reverse
nearest neighbor monitoring. The CMaxRNN problem can
be thought of as a combination of these two problems.

Wong et al. [18] and Du et al. [9] both tackled the prob-
lem of MaxRNN queries. While efficient, both of the afore-
mentioned approaches assume p-norm space ([18] assumes
L2 and [9] assumes L1); hence, their solutions do not apply
to spatial networks. Zhou et al. [22] presented an efficient
solution to solve the MaxBRkNN problem which finds an
optimal region such that setting up a service site in this
region guarantees the maximum number of customers who
would consider the site as one of their k nearest service lo-
cations. Their approach assumes L2 space which can not
be applicable to our problem. The problem of MaxRNN on
spatial networks is studied both by Ghaemi et al. [12] and
Xiao et al. [21] . Ghaemi et al. [12] introduced two comple-
mentary approaches which enable efficient computation of
optimal network location queries with datasets of uniform
and skewed distributions, respectively. Xiao et al. also pro-
posed a unified framework that addresses three variants of
optimal location queries on spatial networks. They divide
the edges of the networks into small intervals and find the
optimal location on each interval. To avoid the exhaustive
search on all edges, they first partition the road network
graph to sub-graphes and process them in descending order
of their likelihood of containing the optimal locations. In
both aforementioned approaches, the assumption is that ob-
jects and sites are static and they do not change location
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over time. Therefore, these approaches are not applicable
to CMaxRNN queries.

Continuous monitoring of RNN queries has received con-
siderable attention. The first continuous RNN monitoring
solution is presented by Benetis et al. [2]. However, they
assume that velocities of the objects are known. First work
that does not assume any knowledge of objects’ motion pat-
terns was presented by Xia et al. [20]. Their proposed solu-
tion is based on the six-regions approach. Kang et al. [13]
used the concept of half space pruning for addressing con-
tinuous RNN queries. Wu et al. [19] proposed a solution for
continuous monitoring of RkNN which is similar to the six-
regions based RNN monitoring approach in [20]. Cheema
et al. [3] focused on continuous bichromatic RkNN queries
where only the data objects move. Sun et al. [15] studied the
continuous monitoring of RNN queries in spatial networks,
but their approach is only applicable to bichromatic RNN
queries and also assumes that the query points do not move.
Recently, Cheema et al. [4] presented a technique for contin-
uously monitoring RkNN queries on spatial networks where
both the objects and queries continuously change their loca-
tions. None of the aforementioned approaches in this group
considers continuous maximization of RNNs.

3. PROBLEM DEFINITION
In this section we formally define the problem of

CMaxRNN queries. Consider a universal set S of sites (e.g.,
the set of food trucks, in our food truck location planning
application), and a set O of objects with the weight wo for
each object o ∈ O (e.g., each object can represent the group
of people residing in a building, with number of the building
occupants as the current weight of the group/object). We
assume both sites and objects are located on a spatial net-
work (a road network). At each time t, a site can be either
in-service or out-of-service, where sites can switch between
these states throughout the day. Moreover, an in-service
site can relocate at any time. On the other hand, to model
change of demand, we assume the weight of each object is
time-dependent (e.g., in our running example, people can
move from one building to another). Note that with this
model we can also capture relocation of the objects.

Next, we first define the problem of CMaxRNN queries.
Thereafter, we reduce this problem to a series of update
operations, which if supported efficiently, one can continu-
ously maintain a precomputation of the MaxRNN (i.e., the
optimal location) as site and object datasets change.

3.1 Continuous Maximal Reverse Nearest
Neighbor Query (CMaxRNN)

Intuitively, a CMaxRNN query is a continuous query that
at time t returns a network segment (or a set of segments)
where introducing a new site would maximize the total
weight of the objects that are closer to the new site than
to any other site. More formally, given a set S′ of in-service
sites and a set O of objects with weight wo(t) at time t,
CMaxRNN returns a subset of the spatial network (i.e. a
segment or collection of segments) where introducing a new
site s would maximize the total weight of the objects in
the bichromatic reverse nearest neighbor (BRNN) set of s.
Here, we should remind the reader that the BRNN query
on a given site s, returns all the objects o ∈ O which their
nearest neighbor site is s, i.e., there is no other site s′ ∈ S′

such that Dist(o, s′) < Dist(o, s).

3.2 Update Operations
Our assumed changes in the site and object datasets (i.e.,

state change of the sites, relocation of the sites, and weight
change of the objects) can be captured by one (or a combi-
nation) of the following three so-called “update operations”:

• Site Delete Operation (termed Delete, for short), with
which a site s is removed from the set S′ of in-service
sites at some time t

• Site Insert Operation (termed Insert, for short), with
which a site s is added to the set S′ of in-service sites
at some time t at the optimal location

• Object Weight Change Operation (termed Weight-
Update, for short), when the weight wo(t) of an object
o changes at some time t

For example, site relocation can be implemented as a Delete
followed by an Insert. Note that we assume sites are always
inserted at the optimal location.

We argue that once MaxRNN is precomputed, for efficient
execution of CMaxRNN (i.e., to maintain MaxRNN at ev-
ery time t), one only needs to support efficient execution
of the aforementioned update operations, which capture all
changes in the site and operation datasets. With a näıve ap-
proach, one can recompute MaxRNN from scratch each time
one of the update operations occurs. However, as we men-
tioned before, this approach fails to scale with large datasets.
Accordingly, we propose an incremental solution that con-
sists of two components: 1) to identify and precompute a set
of state variables that are required for incremental computa-
tion of MaxRNN (i.e., the optimal location), and to organize
and store the variables in a data structure that allows for
efficient update of the variables, and 2) efficiently execute
the update operations by updating the precomputed data
structure that maintains the state variables.

Next, after presenting our terminology in Section 4, we
discuss the two aforementioned components of our solution
in Sections 5 and 6, respectively.

4. TERMINOLOGY
In this section we formally define our terminology to be

used in the rest of the paper.

DEFINITION 1 (LOCAL NETWORK): Given an object
o, the local network LN(o) of o, is a sub-network ex-
panded at object o that contains all points on the road
network with a network distance less than or equal to the
network distance between o and its nearest site s; i.e:
LN(o)={q|q ∈ e, dN(o, q) ≤ dN(o, s)} where e ∈ E and

s = argminp∈SdN(o, p).�
In Figure 1, site s1 is the nearest site to the object o1

where dN (o1,s1)=5. LN (o1) is identified by expansion, i.e.,
starting from o1 we traverse all possible paths up to the net-
work distance equal to 5, and we delimit LN (o1) by marking
the ending points, namely markers (shown as arrows in Fig-
ure 1). We term this delimitation process edge marking. The
expanded network consists of a set of local edges connecting
the associated object to all marked ending points. It is im-
portant to note that local edges can fully or partially cover
an actual edge of the road network. For example, the local
edges of LN (o1) are o1n2, o1n1, o1n4 and o1n (shown as
bold lines in Figure 1). Each local edge e is also assigned

63



Figure 1: Local Networks

an influence value, denoted by I(e), which is equal to the
weight of the corresponding object. For instance, all local
edges in LN (o1) have an influence value equal to 3 (i.e., the
weight of object o1).

DEFINITION 2 (OVERLAPPING LOCAL NETWORKS):
A local network LN(o1) overlaps a local network LN(o2) if
LN(o1) ∩ LN(o2) �= ∅. In such case, there exists at least
one local edge e1 in LN(o1) which intersects a local edge e2

in LN(o2).�
For instance, in Figure 1 LN (o1) overlaps with LN (o2)

since the local edge o1n2 in LN (o1) overlaps with the local
edge o2n3 in LN (o1).

DEFINITION 3 (OVERLAP SEGMENT): Given two over-
lapping local networks LN(o1) and LN(o2), an overlap seg-
ment s is a network segment where two overlapping local
edges e1 and e2 from the two local networks intersect; i.e.:

s = {q|q ∈ e1, q ∈ e2} where e1 ∈ LN(o1) and e2 ∈
LN(o2) and LN(o1) ∩ LN(o2) �= ∅. Accordingly, the influ-
ence value of segment s, Is, is defined as Is = I(e1) +I(e2).�

For example, in Figure 1 the overlap segment jn2 is iden-
tified by overlapping the local edges o1n2 and o2n3. Also,
its influence value is equal to 9.

DEFINITION 4 (IMPACTED OBJECTS): In “Delete” and
“Insert” operations, the objects whose NN site is changed are
called Impacted Objects(I-OBJ). When an exiting site s is
removed from the set of in-service sites, a number of object
points get impacted by losing their NN site which are in the
RNN set of site s. Also, adding a new site s to the set of
in-service sites has impact on a number of objects who get
attracted to the new NN site s. Besides these two operations,
in a “Weight-Update” operation, the objects whose weights
change over time are called impacted objects as well.�
DEFINITION 5 (IMPACTED EDGES): The edges belong-
ing to the local network of impacted objects are defined as
Impacted Edges (I-EDG). Upon receiving a Delete or Insert
operation, the impacted edges lose markers or receive new
markers. However, in a “Weight-Update” operation, mark-
ers remains unchanged whereas the influence value of the
impacted edges changes. �
DEFINITION 6 (SNAPSHOT MAXRNN QUERY): Given
a set O of objects, a set S of sites, the SMaxRNN query
computes a subset of the spatial network (i.e., a segment or
collection of segments) where introducing a new site s would
maximize the total weight of the objects in the bichromatic
reverse nearest neighbor (BRNN) set of s. �

This is equivalent to the basic optimal network location
queries where both objects and sites are considered static.

5. PRECOMPUTATION
In order to be able to continuously compute the optimal

location with CMaxRNN, the main idea behind our pro-
posed solution is to precompute the likelihood of containing
the optimal location for each network edge, and maintain a
ranking of the edges based on this likelihood from high to
low. With this precomputation, one can efficiently identify
the optimal location to insert a new site (i.e., when an In-
sert operation is executed) by starting from the edges with
higher likelihood and avoiding the edges with lower likeli-
hood during the search process (rather than exhaustively
searching for the optimal location in the entire network).
In particular, we compute the optimality likelihood for each
edge by computing a “score” that reflects the total weight
of the objects whose local networks overlap (at least partly)
with the edge. Obviously, the higher the score of an edge,
the more is the chance of finding an optimal segment on the
edge (where the sum of the weights of the objects whose
local networks all overlap on the entire segment is maximal
among all network segments).

While precomputation of a ranked edge-optimality-
likelihood list allows for efficient computation of the opti-
mal location during Insert, we also need to maintain this
ranked list as update operations are executed. In particular,
with Insert and Delete operations, a new site is respectively
added to or removed from the set of in-service sites, which
may affect the local networks of some objects and in turn the
optimality likelihood of some edges. Similarly, with Weight-
Update operation, the weights of a number of objects are
changed, and accordingly the score of the impacted edges
may change. Accordingly, to enable incremental mainte-
nance of the ranked edge-optimality-likelihood list during
execution of the update operations, in addition to the pre-
computed list itself, we precompute and maintain the local
network for each object. With the latter precomputation, we
can quickly identify the impacted objects and correspond-
ing edges as update operations are executed, and hence, we
can localize execution of the update operations (rather than
recomputing across the network). In the rest of this sec-
tion, we present our precomputation procedure along with
the data structure used to store the precomputed measures.

Figure 2 shows the schema of our precomputed data struc-
ture. The “Site” table, the “Object” table, and the “Edge”
table (also called Marked Edge Table, or MET for short) are
implemented as dynamic arrays, and maintain information
about sites, objects and spatial network edges, respectively.
As depicted in the figure, for each site we maintain the lo-
cation of the site as well as the network edge it resides on.

Figure 2: Schema of the precomputed data structure
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For each object, in addition to location and edge we main-
tain the nearest site of the object as well as (the edges that
comprise) its local network. Finally, for each edge we main-
tain the corresponding network nodes that delimit the edge,
the computed score of the edge (as described above), and
a list of pointers to the markers residing on the edge. The
“Marker” table maintains information about all markers and
is stored as a hash table to allow for efficient lookup and up-
date during execution of the update operations.

Figure 3 represents the procedure we follow to populate
the precomputed data structure. To emphasize, the pre-
computation procedure is executed only once and offline (as
compared to update operations that are executed online).
Below, we explain how we implement this procedure in three
steps:

1. Expanding local networks and marking the edges: Af-
ter populating the generic site, object and edge in-
formation onto the corresponding tables of our data
structure, for each object o we first expand the local
network of o, LN(o), using the Dijkstra algorithm, and
we stop when we reach the nearest site to o. Then, we
mark the ending points/markers of the local networks
on the edges and record the markers.

2. Populating MET : Once markers are generated, we
populate MET entries with corresponding markers. In
addition, for each edge entry e, we compute and store
the edge score Sc(e) (as described above). MET rep-
resents our edge-optimality-likelihood list, to be used
for computation of the optimal location/segment (de-
scribed next as presented in Figure 4).

3. Sorting MET : Finally, we sort all entries in MET in
descending order of Sc(e), to identify the edges with
higher likelihood of optimality.

The time complexity of the MET population step is O(|E|)
and that of the MET sorting step is O(|E|log|E|). Thus,
the overall running time of precomputation procedure is
O(|E|log|E|) + O(|O|(|N |log|N | + |E|)).

Before we move on to discuss how update operations are
implemented based on the precomputed data structure, here
we will present a key computation which is frequently in-
voked during execution of the update operations, i.e., deriv-
ing the optimal location/segment based on MET. Figure 4
represents the procedure we follow to perform this computa-
tion. Below, we explain how we implement this computation
in three steps:

1. Initializing optimal result set : Assume the set of opti-
mal location(s)/segment(s) is denoted by So, with the
optimal influence value Io. At this step, we initialize
So to empty set and Io to zero.

2. Identifying overlap segments on each edge: From the
set of marked edges in MET, we identify the optimal

Precomputation Procedure
1: For each o ∈ O
2: Expand the local network of object o
3: Mark ending points/markers on edges
4: Construct Marked Edge Table (MET)
5: Sort MET table based on Sc(e)

Figure 3: The precomputation procedure

Optimal Location Computation
1: Initialize So and Io to ∅

2: For each marked edge e of MET table
3: If Sc(e) ≥ Io

4: Apply edge collapsing to edge e
5: Retrieve Is and optimal overlap segment(s)
6: Update Io = Is

7: Update So to the set of overlap segments
with maximum influence value Is

8: Return optimal solution set So and Io

Figure 4: Optimal location computation based on
MET

overlap segments by a process, so-called, edge collaps-
ing. First, we split the edge e into a set of segments,
SG(e), where each segment is the part of the edge
e which is located between two consecutive markers.
Then, for each segment s of SG(e), we identify the
local networks overlapping with e which are fully cov-
ering s. Accordingly, we compute the influence value
of the segment s by summing up the influence values
of the corresponding local networks. For each edge en-
try in MET, the optimal overlap segment so, is the
segment which has the highest influence value among
all segments in SG(e). Note that edge collapsing may
produce more than one optimal overlap segment on
each edge.

3. Finding the maximum influence value: After collaps-
ing each edge, update So and Io, if the influence value
Iso of so is larger than the current Io. Once the compu-
tation terminates, So includes the set of optimal over-
lap segment(s) with the optimal influence value Io.

The complexity of the edge collapsing computation is
O(|E||O|2).

6. UPDATE OPERATION EXECUTION
In this section, we present the procedures we have devel-

oped to execute the update operations based on the data
structure precomputed in Section 5.

6.1 Delete Operation
Once a site s is deleted from the set of in-service sites,

the status of the corresponding impacted objects and edges
must be updated in the data structure as follows:

1. Retrieving the impacted objects: All objects belonging
to the RNN set of the site s are considered as impacted
objects, because these objects are the ones losing their
NN site s. With our proposed precomputed data struc-
ture, computing the RNN set for s is very efficient,
because the NN site for each object is already stored
in the Object table and can be used for quick RNN
computation.

2. Removing local networks of the impacted objects: With
our precomputed data structure, this is simply accom-
plished by removing the corresponding markers from
the MET and Marker tables. In this way, we can avoid
the costly recomputation of the local networks for all
impacted objects.

3. Expanding the new local networks for the impacted ob-
jects and identify their new NN site: To identify the
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new NN site for each impacted object, one needs to
expand a new local network for the object. However,
we observe that the distance between the new NN site
and the impacted object is always larger or equal to
that of the s and the object. Therefore, we can derive
the new local network simply by extending the previ-
ous local network, avoiding reexpansion of the network
from scratch.

4. Populating the tables: At this step, given the new local
network we add new markers of the impacted objects
to the MET and Marker tables.

5. Updating the score of the impacted edges in MET : Fi-
nally, the score of each impacted edge e that loses
markers or receives new markers is updated as follows:

NewScore(e) = OldScore(e)+

[Score(newMarkers) − Score(oldMarkers)]

6.2 Insert Operation
Similar to the Delete operation, once a site s is added to

the set of in-service sites, the status of the corresponding
impacted objects and edges must be updated in the data
structure as follows. Note that the computations required
at each step is similar to that of the corresponding step in
executing the Delete operation as discussed above; here, we
avoid from repeating details:

1. Insert the new site at the optimal location: At the very
first step, the optimal location computation process
depicted in Figure 4 is invoked to identify the (seg-
ment of) an edge e, which is optimal place for the new
insert. Accordingly, the precomputed data structure
is updated with the new site information.

2. Retrieving the impacted objects: Based on Lemma 1,
the objects whose local networks include the edge e
are considered the impacted objects. These objects
can be quickly identified from the Object table given
the precomputed information about local networks of
the objects.

3. Removing local networks of the impacted objects: See
Step 2 of the Delete operation execution for details.

4. Expanding the new local networks for the impacted ob-
jects and identify their new NN site: Similar to Step 3
of the Delete operation execution, we can compute the
new local networks based on the previous local network
expansions, but here by contracting the expansion in-
stead.

5. Populating the tables: See Step 4 of the Delete opera-
tion execution for details.

6. Updating the score of the impacted edges in MET : See
Step 5 of the Delete operation execution for details.

6.3 Weight-Update Operation
Execution procedure for the Weight-Update operation can

be summarized as follows (the steps are self-explanatory by
now):

1. Retrieving the impacted objects whose weight changes

2. Updating the score of the impacted edges belonging to
the local networks of the impacted objects in MET

7. COMPLEXITY ANALYSIS
In this section, we analyze the computational complexity

of our three aforementioned queries.

Delete Operation: Below, we discuss the computational
complexity of various tasks with the Delete operation.

Retrieving the impacted objects: As mentioned earlier,
the RNN set of site points are computed in precomputa-
tion phase. Accordingly, given the EdgeID of edge e all
impacted objects can simply be retrieved by accessing the
Site, Edge and Marker tables in a sequence (see Figure 2).
Therefore, this step takes about O(|O|). However, this cost
is very low compared to the approach of computing the
RNN set by constructing the Voronoi cell of each in-service
site ([14]). The NVD can be constructed using the parallel
Dijkstra algorithm [11] with Voronoi generators as multi-
ple sources ( Recall the cost of running parallel Dijkstra is
O(|O|(|N |log|N |) + |E|)).

Removing local networks of the impacted objects: The cost
of removing the markers of corresponding impacted objects
is O(|E||O|) since in the worst case all O(|O|) objects might
get impacted and also all local networks might overlap each
individual edge of the graph.

Expanding the local network of the impacted objects: Since
the maximum number of overlapping local networks is theo-
retically equal |O|, the running time for expanding the local
networks takes O(|O|(|N |log|N |) + |E|)).

Adding the markers of the impacted objects to the MET
and Marker tables: Marking all ending points on edges re-
quires O(|O||E|)) time.

Updating the score of the impacted edges in MET : This
step takes O(|E|) time.

Identifying the optimal segment(s) with the maximum in-
fluence value: This step includes sorting the MET and
then applying the edge collapsing technique which requires
O(|E|log|E|) and O(|E||O|2), respectively.

The overall running time of CMaxRNN query in response
to a ”Delete” operation is O(|E|log|E|)+O(|O|(|N |log|N |+
|E|)) + O(|E||O|2).
Insert Operation: The computational complexity of In-
sert operation is similar to the Delete operation. For the first
step (i.e. retrieving the impacted objects), objects whose
local network includes a specific edge, can be identified by
accessing the Object, Edge and Marker tables in a sequence
(see Figure 2). Therefore, this step takes about O(|O|). The
remainder of the steps have the same complexity as of those
related to an Insert operation. Therefore, the overall run-
ning time of the CMaxRNN query in response to an ”In-
sert” operation is O(|E|log|E|) + O(|O|(|N |log|N |+ |E|)) +
O(|E||O|2).
Weight-Update Operation: The overall running time
of the CMaxRNN query in response to an Weight-Update
operation is O(|E|log|E|)+O(|E||O|2) since there is no cost
of expansion involved.

8. EXPERIMENTAL EVALUATION
We next describe the setup we used for the experiments

and then present and discuss the results.

8.1 Experimental Setup
All experiments are performed on an Intel Core 2.2GHz,

4 GB of RAM, running Windows 7 and the .NET platform
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Table 1: Four synthetic datasets for objects and sites
Datasets Object Size Site Size Spatial

Distribu-
tion

Weight
Distribu-
tion

S1 2000, 5000,
10000, 20000

500 Uniform Uniform

S2 20000 500, 1000,
2000, 5000

Uniform Uniform

S3 20000 500, 1000,
2000, 5000

Uniform Normal

S4 20000 500, 1000,
2000, 5000

Normal Uniform

3.5. The algorithms are implemented in Microsoft C�. We
use a spatial network of |N | = 375691 nodes and |E| =
871715 bidirectional edges, representing the LA County road
network. The spatial network covers 130 km * 130 km and
is cleaned to form a connected graph. We use both real-
world and synthetic datasets for objects and sites. All sites,
objects, nodes and edges are stored in memory-resident data
structures.

Real dataset: In our real-world dataset, objects are
population data derived from the LANDSCAN population
database compiled on a 30” x 30” latitude/longitude grid.
The centroid of each grid cell is treated as the location of
each object and the population within each grid cell as the
weight of object. For the objects which are not located on
road network edges, we snapped them to the closest edge
of the road network. In total we have |O|= 9662 objects.
The weights of objects are distributed nearly uniformly with
an average of 1100. Sites are food trucks locations de-
rived from a web mobile application operated by TruxMap
(http://www.foodtrucksmap.com/la/). TruxMap is a live
map of all the roaming food trucks in Los Angeles and else-
where. Once a food truck has scheduled a start or stop
through its Twitter account or an iPhone application using
GPS, a marker is automatically generated on TruxMap food
truck tracker.

Synthetic dataset: We synthesized four datasets (S1, S2,
S3, and S4) with different size and spatial distributions: uni-
form and normal distribution (mean μ = 1, standard devia-
tion σ = 3.2). To select each object/site point, we randomly
picked both X and Y dimensions of the point using the uni-
form or normal distribution. The cardinality and distribu-
tion of each dataset is shown in Table 1. For each dataset,
both objects and sites are either uniformly distributed or
skewed. With S1, we considered a fixed site-dataset and
various object-datasets whereas with S2, S3, and S4 we used
a fixed object-dataset and various site-datasets. Also, we
considered datasets with two different weight object distri-
butions. For instance, in S1, S2, and S4 the weight of object
datasets are all uniformly distributed with a weight equal
to 1. However, in S3 the weight of objects are normally
distributed (mean μ = 1, standard deviation σ = 10.2).

8.2 Experimental Results
Below we present the results of the three series of experi-

ments that we ran on the aforementioned datasets.

8.2.1 Feasibility Study
We first verified that the SMaxRNN query is not applica-

ble to CMaxRNN Queries. For this test, we selected our real-
world dataset with 9662 object points and for site points,
we retrieved the location of 32 food trucks from TruxMap

Table 2: Comparing the execution time of
SMaxRNN and CMaxRNN queries

SMaxRNN
CMaxRNN

Delete Insert Weight-Update
39 minutes 68 seconds 37 seconds 19 seconds
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Figure 5: Execution times of CMaxRNN and
SMaxRNN on S1

tracked on a given day. We observed that for that given
day, the location of sites points might change as frequently
as every two minutes. We first applied the SMaxRNN query
on the dataset and computed the execution time. Then, we
performed the CMaxRNN algorithm and retrieved its cor-
responding execution time in response to the three Delete,
Insert and Weight-Update operations. The execution time
of each operation is retrieved by averaging the execution
time of a hundred runs. We observed that the SMaxRNN
query takes about 39 minutes to identify the optimal loca-
tion (Table 2). However, the CMaxRNN query takes about
68, 37, and 19 seconds for Delete, Insert, Weight-Update,
respectively. This experiment verifies the fact that using
the SMaxRNN approach for continuously computing the
MaxRNN set on spatial network databases is not feasible.

8.2.2 Empirical Analysis
In order to evaluate the execution times of our proposed

approach, we implemented a set of experiments with syn-
thetic datasets. Below, we describe each experiment in more
detail.

Effect of site and object cardinality on CMaxRNN
and SMaxRNN: For this experiment, we selected both
the S1 and S2 datasets and applied the SMaxRNN and
CMaxRNN approaches to them and computed their execu-
tion times. In order to compute the execution time of each
operation (Delete/Insert/Weight-Update), we sampled 100
iterations and picked the average of their execution time as
the result. Figures 5 and 6 depict the results of our exper-
iment. We observe that in both datasets the CMaxRNN is
about orders of magnitude faster than the SMaxRNN. This
is because all objects in the dataset and their correspond-
ing local edges are engaged in the SMaxRNN computation.
However, in CMaxRNN the computation is only limited to
the impacted objects and impacted edges.

Effect of site and object cardinality on the three
Delete, Insert and Weight-Update operations: For
this experiment, we selected both the S1 and S2 datasets
and applied the CMaxRNN approach to the three operations
and computed their execution times. In order to compute
the execution time of each operation (Delete/Insert/Weight-
Update), we sampled 100 iterations and picked the average
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Figure 6: Execution times of CMaxRNN and
SMaxRNN on S2
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Figure 7: Execution times of the
Delete/Insert/Weight-Update operations on S1

of their execution time as the result. Figures 7 and 8 depict
the results of our experiment. We observe in Figure 7 the
execution time of all operations increases when the size of
the objects increases in the dataset S1. Considering fixed
site points in S1, with an increase in the size of objects the
cost of local network expansion becomes higher. However, in
S2 (Figure 8) with an increase in the size of site points, the
cost of expansion (i.e. the cost of CMaxRNN in response to
the three operations) decreases since the object points reach
their NN site faster.

Effect of the spatial distribution of site and object
datasets on the three Delete, Insert and Weight-
Update operations: First, we studied the effect of
datasets with different spatial distributions on the Insert
operation. The results for the Delete operation is qualita-
tively similar. For this experiment, we selected the S2 (uni-
form) and S4 (normal) datasets. Thereafter, we applied the
CMaxRNN approach to the aforementioned datasets and
computed both its execution time and the number of im-
pacted objects (I − OBJ) in response to Insert operations.
In order to compute the execution time, we ran 100 Insert
iterations and picked the average of their execution time as
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Figure 8: Execution times of the
Delete/Insert/Weight-Update operations on S2
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Figure 9: Comparing the execution times of the In-
sert operation on S2(uniform) and S4(normal)

the result. It is important to note in each run the new site is
placed on a location that is returned as the optimal location
in the previous CMaxRNN query run. Figure 9 presents
the result of our experiment. The left Y-axis represents the
average of the execution time and the right Y-axis shows
the number of I − OBJ . We observe that the number of
I − OBJ is higher with the normal distribution compared
to the uniform distribution. This is because the distribution
of object points is more skewed on a road network for ob-
ject datasets with normal distribution. Therefore, the RNN
query returns a higher number of I − OBJ in more skewed
areas. Accordingly, we observe that the average of execution
time with a normal distribution is higher than the one with
a uniform distribution which is proportional to the num-
ber of I − OBJ and their network expansion, respectively.
However, in Figure 9 the average of execution time for both
distributions look similar since the values are low compared
to the Y-axis scale and are not distinguishable.

Second, we focused on the effect of datasets with different
spatial distributions on the Weight-Update operation. We
applied the CMaxRNN approach to the S2 and S4 datasets
and computed both the execution times and the number of
the impacted edges (I−EDJ) in response to Weight-Update
operations. In order to compute both aforementioned fac-
tors, we ran 100 weight-update iterations and picked their
average as the result. For each Weight-Update operation
run, we randomly selected two objects and moved the pop-
ulation data of the first one to the second one. Figure 10
depicts the results of our experiment. The left Y-axis repre-
sents the average of the execution time and the right Y-axis
shows the number of I − EDG. We observe that in both
datasets (uniform and normal) with an increase in the size
of site points, the average of execution time improves. This
is because considering fixed object points with larger site
points the cost of network expansion decreases. We also ob-
serve that both the average of execution time and I−EDG of
datasets with skewed distribution are higher than those with
uniform distribution. This effect is because of the fact that
with skewed distribution it takes longer for object points to
reach their NN site; hence, it takes longer to expand their lo-
cal networks and compute the optimal location. The size of
their local networks also become larger which causes higher
number of I − EDG while dealing with Weight-Update op-
erations.

Effect of the weight distribution of the object
dataset on the three Delete, Insert and Weight-
Update operations With this experiment, we focus on
the effect of the weight distribution of the object datasets
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Figure 10: Comparing the execution times of
the Weight-Update operation on S2(uniform) and
S4(normal)

0
5
10
15
20
25
30
35
40
45
50

2 4 6 8 10 12 14

Fr
eq

ue
nc

y

Execution Time (seconds)

Insert

Weight-Uniform
Weight-Normal

Figure 11: Distribution of the execution times of
the Insert operation on S2(uniform weight) and
S3(normal weight)

on the Insert and Weight-Update operations. The effect
on the Delete operation is qualitatively similar. We se-
lected one series of data from the S2(uniform weight) and
S3 (normal weight) with 1000 site points and 20000 object
points. Thereafter, we applied the CMaxRNN approach and
computed its execution time in response to the Insert and
Weight-Update operations. The resulting execution time
was computed by averaging the execution time over 100 runs
of each operation. The method we used for performing 100
runs of each operation is as discussed in the previous ex-
periments. Our results showed that in both operations the
average of execution time for object datasets with uniform
and normal weight distribution is similar. To verify this
impact, we studied the distribution of execution times for
each operation. Figure 11 presents the distribution of execu-
tion time in response to an Insert operation. As illustrated,
the distribution of execution times with normal weight (the
hashed bars) is more frequent in low values compared to
those with uniform weight (the dotted bars). This is be-
cause, in object datasets with normal distributions, there
exists a number of objects with high weight values which
dominate the MaxRNN set. The more weight values in the
MaxRNN set means less number of I − OBJ which results
in lower execution times in the CMaxRNN query.

Also, we observe in response to a Weight-Update opera-
tion (Figure 12), the distribution of execution times with
different weight distribution is similar. As mentioned earlier
, the execution time of a Weight-Update is proportional to
the number of I −EDG. On the other hand, changes in the
weight of objects only affects the weight of the I − EDG
not their quantities. Therefore, the performance of Weight-
Update operations is not influenced by the changes in the
weight of objects.

8.2.3 Case Study
With this experiment, we studied the behavior of the
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Figure 12: Distribution of the execution times of the
Weight-Update operation on S2(uniform weight) and
S3(normal weight)

Figure 13: Execution times of CMaxRNN in re-
sponse for Insert operations in the interval from 9:57
and 11:11a.m.

CMaxRNN algorithm in response to changes of the location
of 24 food trucks roaming on LA county in a sample day. We
retrieved their location data from TruxMap from 10:00 to
9:00p.m. and stored this information in a time table. As pre-
sented in Table 3, the minimum interval between the arrival
of two trucks or the arrival of a truck and the departure of
another truck is 2 minutes. The maximum interval is 2 hours
and 24 minutes. As for the object dataset, we selected the
real object dataset (9662 objects), aggregated their weights
and created a new set with 483 objects. We assumed that we
offer a decision making support system for food truck own-
ers that they could ask our system for the optima location
before they decide to change the location of their trucks.
Thereafter, we performed the CMaxRNN queries and com-
puted execution times. Figure 13 presents executions time
for CMaxRNN for the interval from 9:57 to 11:11a.m. in
response to the Insert operation. Figure 14 presents the
execution time of CMaxRNN in response for the Delete op-
eration and the same trucks studied in Figure 13 (but for
the interval between 12:50 and 2:07p.m.). Table 3 provides
a summary of the result of this experiment and shows how
the CMaxRNN returned the optimal result in a couple of
seconds whereas the minimum interval between two opera-
tions is about 2 minutes. Therefore, CMaxRNN supports
continuous answers to MaxRNN queries for a real-world ap-
plication. Also, comparing the execution time of SMaxRNN
and the average in CMaxRNN verifies that the repeated ex-
ecution of SMaxRNN is not feasible to provide continuous
answers for MaxRNN queries. We also observed that the
execution time of CMaxRNN queries in response to both
Delete and Insert operations is proportional to the num-
ber of impacted objects. With a larger number of impacted
objects, expanding their corresponding local networks and
identifying the optimal location, takes more time.
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Figure 14: Execution times of CMaxRNN in re-
sponse for Delete operations in the interval from
12:50 and 2:07p.m.

Table 3: Summary of the result of CMaxRNN
queries on FoodTrucks

Number of food trucks 24
Number of Insert operations 24
Number of Delete operations 24
Minimum interval between two operations 2 minutes
Maximum interval between two operations 2 hour and 24

minutes
SMaxRNN execution time 5.14 minutes
Average of CMaxRNN execution time in re-
sponse to an Insert operation

19 seconds

Average of CMaxRNN execution time in re-
sponse to a Delete operation

41 seconds

Average of impacted objects in response to In-
sert operations

13

Average of impacted objects in response to
Delete operations

23

9. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this study, for the first time we introduced the problem
of continuously maximizing the bichromatic reverse near-
est neighbor for objects and sites located on spatial net-
works. Accordingly, we proposed an incremental approach
for efficient computation of these queries. We evaluated and
showed the efficiency of our proposed solution with rigorous
complexity analysis as well as extensive experimental study,
using real and synthetic datasets.

We intend to extend this study. With the proposed ap-
proach we assumed that multiple operations received se-
quentially are responded serially in a row. Thus, the execu-
tion time of computing CMaxRNN for multiple operations is
equal to the summation of their individual execution time.
However, in some real applications (e.g. disaster-response
planning application) request for multiple operations might
happen simultaneously. Accordingly, we plan to develop a
batch solution for CMaxRNN queries and parallelize some
steps toward providing faster response for multiple opera-
tions. For instance, in response to multiple operations, the
steps of retrieving impacted objects, removing their local
networks and expanding their new local networks can be
done simultaneously. Thereafter, all computed markers can
be applied to MET at the same time and the optimal loca-
tion can be identified as a one-step process.
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