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15.1 INTRODUCTION

Land managers must know the geographical distribution of landscape components
such as vegetation, soils, and terrain to manage natural resources effectively. The
need for natural resource mapping has long been acknowledged:

A vegetation map not only serves as a record of what exists when it is made, but also as
a starting point for the study of changes, whether natural or brought about by human
activity. It serves to arouse public interest of a country in its wild vegetation, which
ought to be recognized as a national possession not to be tightly destroyed or wasted,
and it indicates the localities which are most suitable for the nature reserves which
every country should have. The making of such maps should be part of the national
stock-taking which is the duty of every modern community (Tansley and Chipp 1926).

The production of detailed resource maps was costly, time-consuming, and'not eas-
ily standardized before the advent of digital remote sensing and computerized image
analysis. Such maps were compiled from decades of fieldwork that could not be
updated quickly. Geographic information systems (GIS) and remote sensing now
provide tools for mapping large areas at spatial resolutions as fine as 30 m, and
potentially allow these maps to be updated efficiently (Tueller 1989, Franklin 1995,

Gerrard et al. 1997).
Landsat multispectral remote sensing attempts to identify vegetation based on its

spectral reflectance, measured in the satellite's seven wavelength hands, ranging
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from blue visible light to far-infrared thermal wavelengths (Niemann 1993). Gener-
ally, green leaves absorb light in the 0.4- to 0.7-gm wavelength range, but make an
abrupt transition to reflectance at 0.7 Mm, scattering light effectively between 0.7 and
1.3 pm (Gates etal. 1965, Ripple 1985). In the semiarid grassland and badland cover
types that are common in the Little Missouri National Grathlánd (LIVING) of western
North Dakota, the observed reflectance may result from a combination of live vege-
tation, dead vegetation, and bare soil. In addition, the spectral signature may vary due
to differing angles of illumination, the health of vegetation (affected by pfeèipitation
and grazing), and the seasonal life cycle of vegetation (Theller 1989). The ability of
Landsat Thematic Mapper (TM) to distinguish vegetation types is often limited by
the spectral and spatial resolution of the detector (Nieniann 1993).

Two general types of classification are used: unsupervised and supervised. In the
former, the data are clustered into arbitrary categories, but in the latter, ground-truth
is used as training data to divide the multidimensional data space into categories
based on the observed properties of the training data set (Jensen 1996). Provided that
adequate, unbiased training data are available, supervised methods are far superior to
the arbitrary classes generated with unsupervised methods.

Numerous statistical clustering methods have been used to group multispectral
data into land cover classes, but ultimately, the quantity and quality of ground-truth
data used for the supervised classification of vegetation classes may be more impor-
tant than the classification method used (Congalton 1991). In one such study, Zhuang
et al. (1995) compared minimum distance, maximum likelihood, and neural network
classification accuracy for six land cover classes in a mixed cropland, rangeland, and
broadleaf forest site in Indiana. The three methods produced similar accuracies
(±5%) for each of the land cover classes, with the exception of the bare soil class,
where the neural network classifier was 10% more accurate than the other two meth-
ods. As with many remote sensing applications, accuracies of 85-95% cthsld be
achieved only by lumping land cover types into very broad categories: water, bare
soil, one forest class, one grassland class, and two crop classes (Zhuang et al. 1995).

Most automated remote sensing classification methods are not able to distinguish
ecologically distinct vegetation types of interest to the land manager. Anderson et al.
(1976) defined a hierarchy of land cover types: Land managers are typically inter-
ested in Anderson level III vegetation categories (the species level), but automated
classification accuracies for these classes are generally quite low, 565-75% (Skid-
more and Turner 1988). This result occurs because there is no simple correlation
between vegetation type and spectral signature. Considerable confusion arises
because dissimilar vegetation types may have similar spectral signatures. Further-
more, a given vegetation type may have a seasonally variable signature. Grasslands,
in particular, show rapid responses to varying precipitation amounts (Pickup et al.
1994). Regardless of future improvements in remote sensing technology, such as
imaging spectrometers, which produce a reflectance spectrum for each pixel in the
image, there will always be some inherent confusion between spectral reflectance
and land cover (Wilkinson 1996).

An alternative approach to identifying vegetation by species is to characterize it
by ecological parameters, such as leaf area index (LAI) or above-ground biomass,
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that are less arbitrarily related to the plant's spectral reflectance than genus and
species (Anderson et al. 1993, Paruelo and Lauenroth . 1995). However, establishing
a universal relationship between remote sensing spectral indices, such as the Nor-
malized Difference Vegetation Index (NDVI), and ecological parameters has some-
times proved difficult. In Great Plains grasslands at Mandan, ND, Aase et al. (1987)
found that the relationship between NIDVI and LA! varied according to the intensity
of cattle grazing, making it impossible to translate NDVI into LA! without knowing
the grazing intensity. Friedl et al. (1995) reported similar problems in the Konza
Prairie, KS. The rapid temporal variation of the spectral signature and interplay of
forces, such as drought and grazing, would seem to provide special challenges for
those interested in automated mapping of rangeland cover types over large areas.

Topographic attributes are increasingly utilized in remote sensing classifications.
In one such study. Niemann (1993) used three topographic attributes (elevation,
slope gradient, aspect) and location (an easting to measure distance along a gradient
between the interior and coastal biogeoclimatological zones) with Landsat TM infor-
mation to identify eight conifer classes in the old-growth forest of southwestern
British Columbia. Only three of the eight classes (which varied in terms of species
composition, age class, and crown closure) yielded accuracy results> 50%. The low
overall accuracy (-45%) was attributed to two factors: (I) Different conifer stands
displayed similar spectral reflectances, and (2) many of the age differences were
related to past land use practices or disturbance history that was not well correlated
with site characteristics. In another study, Jorta and Jorgenson (1996) used ancillary
data layers of elevation, slope, landforrn type, solar radiation, and riparian zones in a
postclassification rule-based model to classify 14 arctic tundra cover types. Classifi-
cation accuracy remained at —50% when these topographic attributes were used. One
potential advantage of the statistical clustering method used in the first application is
that it does not involve assumptions about the relationship between vegetation and
terrain, whereas rule-based classifiers may involve subjective rules and broad
assumptions about terrain—vegetation correlations. Often, rule-based classifiers are
specific to a particular area, whereas genra1 statistical clustering is less site-
dependent. 	 I

We explored whether topographic attributes could be used to improve the accu-
racy of remote sensing land cover maps in the LMNG. We compared the accuracy of
vegetation maps prepared with an existing remote sensing classification method and
varying numbers of topographic attributes to determine whether application of these
methods is worthwhile over the entire Little Missouri region. Topographic attributes
were examined because topographic data were available (unlike soil and climate
data) at an appropriate scale in this study area. Modem soil surveys are available for
less than 50% of the study area, and where 1:24,000 scale soil maps are available,
they do not resolve individual wooded valleys and small drainages, but lump together
much of the highly dissected badlands as "mixed badlands complex" (Aziz 1989).
The climate of western North Dakota does not exhibit the dramatic elevation-induced
variations seen in more mountainous terrain: The climate within the study area is
quite homogenous (Owenby and Ezell 1992) and is therefore of little use in differen-
tiating vegetation types. We were particularly interested in two vegetation-related
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parameters that may be improvements over the basic parameters of elevation, slope,
and aspect: (I) the spatial pattern of soil moisture as affected by slope and upsiope
contributing area, and (2) solar radiation as affected by topographic shading from
nearby features. Both indices mimic physical processes not addressed by slope and
aspect alone. Thus, one might expect these secondary topographic attributes to cor-
relate with vegetation better than slope and aspect. We also examined the sensitivity
of predicted land cover maps to the level of spatial aggregation and types of source
data that were utilized.

15.2 DESCRIPTION OF STUDY AREA

Our study area was a 1700-km 2 portion of the LMNG (Figure 15.1) delineated by
five 7.5' USGS quadrangles (i.e., the Tracy Mountain, Cliffs Plateau, Deep Creek
North, Spring Creek, and Juniper Spur quads). This area was selected for four rea-
sons. First, it has relatively high vertical relief (farther east the terrain is very flat, the
USGS digital data errors become more troublesome, and the effects of terrain on veg-
etation are less dramatic). Second, these five quadrangles contained the highest den-
sity of ground-truth data. Third, the area included all the major landscape types of the
Little Missouri (i.e., rolling uplands, wooded draws, badlands, river floodplains, and
terraces). Fourth, they contained the Third Creek catchment that drains into the Lit-
tie Missouri River and we needed to be able to delineate upslope contributing areas
to calculate the topographic wetness index.

The erosional processes that created the North Dakota badlands began more than
600,000 years ago, when the continental ice sheet displaced the Little Missouri River
southward into a shorter, steeper channel. The Little Missouri and its tributaries con-
tinue to cut into the surrounding plain. The eastern boundary of this erosion bisects
the study area, dividing it into two dramatically different physiographic regions: the
gently roiling Missouri Slope Upland to the east and the Little Missouri Badlands to
the west (Bluemle 1975).

The bedrock is entirely sedimentary, consisting of Upper Cretaceous and Tertiary
shale strata. The Bullion Creek Formation, which underlies most of the study area,
consists of alternating layers of sandstone, shale, and lignite. Flat-topped buttes
(monadnocks) of the more resistant sandstone rise 150 m above the surrounding
peneplain. Total vertical relief in the study area is less than 250 m. The Little Mis-
souri has incised a channel 100-200 m below the surrounding terrain. Most of the
wooded draws have V-shaped cross sections, but the larger channels have floodplains
that are several hundred meters wide, and the Little Missouri River itself has a flood-
plain up to one kilometer wide. Pleistocene river terraces, containing material eroded
from the Rocky Mountains, cover areas up to 10 km 2 near the main channel of the
Little Missouri River. A distinctive feature of this area is the presence of naturally
fired clay (clinker, locally named "scoria"), which is more erosion resistant than
unbaked materials and forms steep-sided knobs 20-40 m high (Bluemle 1975). In
places these knobs, together with depressions caused by the collapse of burned lig-
nite beds, form large areas of hummocky terrain. This highly complex terrain is
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Figure 15.1. Study area map.

barely resolved at the 30-rn cell size of the Landsat TM images and USGS digital ele-

vation models (DEMs).
Soil is largely absent in the badlands because the steep slopes are continually

eroding. Where the parent materials are sufficiently weathered to be considered soil,
Inceptisols and Entisols are common, such as the Cherry (fine-silty, mixed, frigid
Typic Ustochrepts) and Cabbart (loamy, mixed (calcareous), frigid, shallow Ustic
Torriorthents) series, two of the more common soils in the wooded draws (Thompson
1978). The floodplains of the larger creeks are also classified as Entisols, though they

I.,
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may be deep soils, such as the Korchea series (fine-loamy, mixed (calcareous), frigid
Mollic Ustifluvents). The rolling uplands, which are mostly grassland and cropland,
contain moderately deep soils such as Entic and Typic Haploborolis.

The southern half of the study area has been mapped at a scale of 1:24,000 as part
of the Slope County soil survey (Thompson 1978). Most wooded draws are not dis-
tinguished from their surroundings on these soil survey maps, and many of these fea-
tures are mapped as the Badlands—Cabbart complex. flatter upland areas and wide
floodplains within the badlands are delineated, and cropland on the rolling uplands is
mapped at greater detail. The computerized North Dak'ota State Soil Geographic
Database (STATSGO, 1:250,000 scale) soil maps cover the ren&inder of the study
area and show even less detail, but they do distinguish broad areas of badlands from
the surrounding rolling uplands (United States Department of Agriculture—Soil Con-
servation Service 1993).

North Dakota is located near the geographic center of North America and has a
semiarid midlatitude steppe climate (BSk in the Kdppen classification). Cold, dry
winters (-15°C mean monthly average temperature) alternate with warm summers
(21°C mean monthly average temperature) that average 120 frost-free days (Owenby
and Ezell 1992). Precipitation is greatest in the early part of the growing season: 50%
of the 400 mm annual precipitation occurs in April, May, and June, compared to <30
mm in the three winter months (Owenby and Ezell 1992). The temporal variation of
precipitation from year to year at a given station is far greater than the spatial varia-
tion across North Dakota. At Dickinson Experimental Farm, just east of the LIVING,
annual precipitation has ranged from 170 to 800 mm over the period 1904-1993
(Hydrosphere 1993). The rainfall distribution is skewed, with drier than average
years occurring more frequently than wetter years. The thoisture balance in the grow-
ing season shifts dramatically from year to year. At Williston Experimental Farm, the
nearest station for which data are complete, a dry year such as 1988 yielded 9 mm
precipitation and 290 mm observed pan evaporation in the month of July. This mois-
ture balance is reversed in wet years such as 1993 when 208 mm of precipitation and
136 mm observed evaporation were reported (NOAA 1993a). The wet weather was
also accompanied by much cooler temperatures: In July 1993 the mean daily maxi-
mum was 9.3°C cooler than in July 1988.

The LIVING is also a transition zone between western and eastern plant species
(Rudd 1951). The region is at the western limit of the range of eastern hardwoods,
such as green ash (Fraxinus pennsy/vanica) and bur oak (Quercus inacrocarpa), and
at the eastern of western species, such as Rocky Mountain juniper (Juniperus
scopulorurn) and ponderosa Pine (Pinusponderosa) (Little 1971). Furthermore, the
area is the southernmost extent of some boreal forest trees, such as balsam poplar
(Popu/us balsam(fera) and paper birch (Berula papyfira). Desert plants with ranges
centered on the Great Basin, such as cactus (Opuntia frag ills), yucca (Yucca glauca),
saitbush (Atriplex sp.). skunkbrush (Sacrobatus vermiculatus), saltgrass (Distic/zlis
stricta), and sagebrush (Arre,nesia tridentata) are also widespread in the Little Mis-
souri region (Rudd 1951). However, they may not grow in patches large enough to be
detected by remote sensing.
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The climate is sufficiently and and hot in the growing season that most tree species
are unable to grow on south-facing slopes, with the pthsible exception of ponderosa
pine (Pinus ponderosa). Broadleaf trees such as green ash (Fraxinus pennsylt'an tea)
and shrubs such as snowberry (Symphoricarjs occidenta!is) are largely confined to
woody draws near watercourses (Table 15.1). Brown (1993) mapped species composi-
tion of grasses in the Great Plains and found western wheatgrass (Agropyron smith!!)

and needle-and-thread (Stipa comata) to be the most common "cool-season" grasses

(C3 photosynthesis path), and blue grama (Bouteloua grad/is) is the only "warm-

season" (C4 photosynthesis path) grass in western North Dakota. Crested wheatgrass
(Agivpymn desertorum), an introduced bunchgrass from the Russian steppe, was abun-
dantly planted to prevent erosion on former croplands abandoned during the Dust Bowl.

TABLE 15.1 Land Cover Type Codes and Descriptions (as delineated by Diflenedetto)

2100 Cropland, cultivated pasture, and hay
3110 Low grass/low, cover: Blue grama (Routeloua gracilis), needle-and-thread (Stipa

comara), and threadleaf sedge (Carexfthifolia) with low biomass productivity (less
than 800 kg/ha). low ground cover, and extensive bare ground. Occurs on ridgelops
and clay outwash areas below buttes.

3111 Low grasstmoderate cover: Needle-and-thread, western wheatgrass (Agropyron

smithii), and blue grama with medium biomass productivity, moderate ground
cover, and less bare ground than cover class 3110. Typically occurs on hillslopes.

3201 Mesic upland shrub: Snowberry (Symphoricarpos occidentalis), buffaloberry

(Sheperdia argentea), chokecherry (Prunus virginiana), and creeping juniper
(Juniporus horizontalis) with occasional young green ash (Fraxinus

pennsy/vanica) trees. Occurs on north-facing slopes and in depressions and draws.
3309 Sagebrush: Silver sagebrush (Artemisia americana) with snowberry as a co-

dominant shrub in some locations and a western wheatgrass/blite grama under-
story. Occurs mainly in valley bottoms and on terraces adjacent to stream channels.

4102 Upland broadleaf forest: Dominated by green ash and found mostly on steep, north-
facing slopes associated with badlands or deeply incised channels and draws.

4206 Ponderosa pine forest: Dominated by ponde!osa pine (Pinuspondemsa) with occa-

sional Rocky Mountain juniper (Juniperus scopulorumn), green ash, snowberry, and
chokecherry. Occurs on shallow soils associated with ridges and hillslopes.

4214 Rocky Mountain juniper forest: Dominated by Rocky Mountain juniper with occa-
sional green ash. Occurs on very steep, north-facing badland slopes.

5000 Water
6102 Riparian broadleaf forest: Dominated by green ash. Occurs along river bottoms and

narrow draws.
6201 Riparian grass and forb: Western wheatgrass, baltic rush (Juncus balticus), and a

mixture of forbs. Occurs along channel bottoms and draws.
6202 Riparian shrub: Snowberry, buffaloberry, and chokecherry with occasional young

ash trees. Occurs in channel bottoms, valley bottoms, and narrow draws.
7601 Badland: Scattered patches of grass and big sagebrush (Artemisia tridentara

wyomingensis) shadscale (A triplex confertifolia), green rabbitbnjsh (C'/irysotham-

nus visidiflorus), and greasewood (Sarcobatus vermicularus). Occurs on steep,
south-facing badland slopes and in outwash areas at the base of buttes and slopes.
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15.3 METHODS AND DATA SOURCES

15.3.1 LandsatTM Image Classification
A cloud-free Laudsat Thematic Mapper image (path 34, row 28) dated 5 July 1989
was used because no more recent cloud-free images were available for the growing
season at the start of this study. This image was terrain-corrected and georeferenced
to an Albers conical equal area projection by Hughes STX Corporation. We did not
evaluate the spatial accuracy of this terrain correction, but it appeared to register very
well with the other digital data for the area, including roads and streams from U. S.
Forest Service 1:24,000 scale cartographic feature files.

Land cover was classified using a multistep method developed for mapping large
(10,000-100,000 km) areas (Ma and Redmond 1993, Ma et al. 2000). The first step
used bands 3, 4, and S for each 30-rn Landsat TM pixel and applied an unsupervised
clustering algorithm, which is closely related to the widely used color-quantization
scheme for approximating three-color composite images in a single 8-bit color image
(Heckert 1982, Ma et al. 2000). The resulting vegetation classes were color-coded to
resemble their appearance in a red—green—blue (RGR) color composite of the three
bands, allowing easy visual inspection of the classification, and comparisons with the
original image.

Image pixels were spatially grouped into three ecologically relevant patch sizes to
eliminate the visual confusion of "salt-and-pepper" pixels during the second step.
Three minimum map unit thresholds of 0.36 ha (5 cells), 0.81 ha (9 cells), and 2.0 ha
(23 cells) were used to evaluate the trade-offs between map clarity and detail. Care
must be taken to avoid removing ecologically important features such as woody
draws and riparian corridors, which are prevalent in the LIVING. Vegetation classes
that did not occur in patches as large as these minimum map units were eliminated,
resulting in fewer classes in the aggregated image. An additional advantage of aggre-
gation is that it greatly speeds subsequent computation and reduces data storage
requirements because later classifications are performed on the raster polygons
rather than individual image pixels (Ma and Redmond 1996). The remaining four
Landsat TM bands (1, 2, 6, and?) and selected topographic attributes were then aver-
aged within each raster polygon to obtain mean attribute values for each patch.

The third step consists of a supervised nonparametric classification that assigns a
cover type label to each patch based on the nearest distance in multidimensional
parameter space to one of the ground reference "training" plots. In this study, 9, 10,
or II data layers were used, depending on how many topographic attributes were
included in the classification. The advantage of this "nearest member of group" clas-
sification is that it does not depend on any assumptions about the statistical distribu-
tion of parameters. Several cumulative topographic attributes, such as upslope
contributing area and the two topographic wetness indices, were not normally dis-
tributed.

A fourth, optional step provides a postclassification sorting of riparian and upland
land cover classes with similar spectral signatures using a stream buffer defined by an
elevation threshold. The stream channels can be input either from USGS digital line
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graph (DLG) hydrography data or from drainage channels computed by terrain analy-
sis software such as TAPES-G, and the buffer is calculated with the same DEM data
used to calculate other topographic attributes (see below). The supervised, nonpara-
metric classification (third step) is repeated using a smaller minimum map unit inside
the riparian buffer in some applications. In this study, we used an elevation difference

of 5 in define the width of the riparian zone and we examined whether the reclassi-
fication of land cover types to the appropriate riparian or upland designation (based on
their occurrence inside or outside this zone) improved overall performance.

15.3.2 Digital Elevation Models

The five USGS 75 30-m DEMs (Figure 15.1) were joined and reprojected in
ARC/INFO from the original Universal Transverse Mercator (UTM) projection to the
same Albers projection as the Landsat TM image. The digital elevation data con-
formed to USGS map accuracy level one that allows a mean elevation error of 7 in
a 7.5' quadrangle (United States Geological Survey 1993). However, the systematic
and spatially patterned nature of the error can sometimes be confused with real terrain
features in an area such as the LMNG where the total vertical relief is as little as 20 m
in some quadrangles. Several examples of the types of error that can occur in USGS
elevation data are illustrated in Figure 15.2, which shows a 16 x 22-km area located at
the southern boundary of the study area. Parts of six USGS 7.5' map quadrangles are
included. Three types of error are visible. First, there is a quasi-periodic "ripple" of
250- to 300-rn wavelength and up to 7-m amplitude, oriented roughly, but not exactly,
east—west. Second, there is a quasi-random lumpiness of approximately 20-ha patch
size, which varied in amplitude from quadrangle to quadrangle. Third, there are linear
discontinuities of up to 15 in elevation, running north—south and east—west, which
often, but not always, agree with quadrangle boundaries. The amplitude of all three
types of error varied substantially from quadrangle to quadrangle; the orientation and
spatial frequency varies less dramatically. Over water bodies, such as reservoirs, the
errors have apparently been removed by the USGS, as they were not present.

The ripple originated from USGS manual profiling of photogrammetric strereo-
models (U, S. Geological Survey 1993) and is actually modulated by terrain. Human
operators made negative errors (resulting in lower elevations) when scanning in an
uphill direction and positive errors when scanning downhill (Band 1993b), so that the
phase of the ripple is altered by terrain. This error pattern is therefore difficult to
remove using standard de-striping algorithms such as Fourier filtering (Simpson et
al. 1995). If the ripple were a perfect sinusoid superimposed on terrain, it could sim-

ply be subtracted from the DEM, but the variable amplitude, wavelength, and phase
make this impossible. A disadvantage of the commonly used rectangular box-
average method of stripe removal (Brown and Bara 1994) is that it removes real ter-
rain features, such as some east—west trending woody draws in the LIVING (see

Chapters 2 and 5 for more detailed discussions of DEM sources and errors). The 75
USGS 30-rn DEMs are by far the best elevation data available for our study area, so
precise quantification and correction of errors, or the side effects of ripple removal
methods, cannot be undertaken, because there are no reference data.
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Figure 15.2. Shaded elevation map showing DEM errors in part of study area.

15.3.3 Terrain Analysis

The standard suite of primary topographic attributes described in Chapter 3 were cal-
culated with TAPES-G using the following options. First, depressions present in the
raw DEM caused by elevation errors such as the ripple pattern and/or the terrain
being insufficiently resolved at the 30-rn cell size of the DEM were removed. The
narrow wooded draws in the LIVING are only a few cells wide, so the bottom of the
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channel is not always sampled, producing a chain of "spurious pits" along the
drainage path. Second, the FRho8 multiple-flow direction method was used to simu-
late flow across upland areas with upslope contributing areas of less than 20,000 m2.
Third, the Rho8 single-flow direction algorithm was used to simulate flow across
"channel" cells with upsiope contributing areas of 20,000 m2 or more.

This maximum cross-grading area threshold of 20,000 m2 was chosen because it
provided the best match with the blue stream lines recorded on 7.5' USGS quadran-
gles. These stream lines were not totally consistent with catchment area since they
were derived from photo interpretation. Another approach is to adjust the TAPES-G
threshold to give channels that correspond to the pattern of woody draw vegetation
seen in the Landsat TM image. This yielded a lower catchment area threshold,

10,000 m2 , because wooded draw vegetation occurred in drainages smaller than those
delineated with blue stream lines on topographic maps. One disadvantage of the
lower threshold would have been the creation of some spurious channels caused by
DEM errors. Typically, these spurious channels trend east—west in the orientation of
the "ripple" error, but sometimes north—south quadrangle boundaries produce errors
as well (Figure 15.2).

A quasi-dynamic topographic wetness index was calculated with DYNWET (Bar-
ling et al. 1994; Chapter 4) and the slope and upslope contributing area outputs from
TAPES-G. DYNWET also requires average soil depth, saturated hydraulic conduc-
tivity, effective (drainable) porosity, and average drainage time between rainfall
events as inputs. A mean soil depth of 0.5 m and a modal soil texture of silt loam were
estimated from the Slope County soil survey (Thompson 1978). A saturated
hydraulic conductivity of 15 mm/h (Rawls and Brakensiek 1989) and drainable
porosity equal to 25% of soil volume (Ratliff et al. 1983) are representative for this
soil texture. In reality, soil properties vary across the landscape, but the version of
DYNWET implemented for this study assumed that they could be approximated by
these spatial averages. A mean drainage time of 10 days was chosen to reflect the typ-
ical interval between major precipitation events in the LMNG.

SRAD (Wilson and Gallant 2001; Chapter 4) calculates short-wave (visible) and
long-wave (infrared) radiation budgets at each cell in a DEM. For this study, only the
incoming short-wave solar radiation was used, because the other components of the
radiation budget depend on vegetative cover and to use them in the determination of
remote sensing vegetation type would invoke circular reasoning. SRAD uses a three-
component approximation of the sky-brightness function. It computes the sum of
direct-beam solar radiation, a circumsolar diffuse component scattered from within a
few degrees of the solar direction (both affected by topographic shading), and the
wider-angle diffuse radiation reflected from blue sky, clouds, and surrounding ter-
rain. To compute this diffuse component, SRAD requires an input parameter, 3, that
represents the mean transmission coefficient for sunlight passing through clouds.
The 3 parameter was calculated from 1961-1990 mean monthly solar radiation and

percent-of-possible-sunshin e measured at the nearest station to the LMNG in Bis-
marck, ND (NOAA 1993b). Incident radiation was computed at four 90-day intervals
throughout the year, then added to obtain the mean annual short-wave solar radiation

incident on the land surface.
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15.3.4 Ground-Truth Data

Measurements of dominant overstory vegetation were available from plot data col-
lected by the U. S. Forest Service between 1987 and 1994 at 97 field sites in the five-
quadrangle study area. Each site was associated with a vegetation patch visible on the
Landsat TM image, and each plot was assigned a cover type label from a hierarchi-
cal system based on Anderson et a]. (1976) (Table 15.1). To increase the sample size
for land cover types, such as riparian broadleaf forest, that were poorly represented
in the field data, an additional 76 ground-truth sites were obtained from 1:24,000-
scale air photos dated 17 August 1981. Some land cover types, such as riparian shrub,
sagebrush, and juniper forest, were nevertheless still poorly represented (five plots or
less) in the combined data set because they could not be identified on aerial photo-
graphs.

15.3.5 Performance Evaluation

We took the training data set (173 observations) and removed one plot at a time,
using the remaining data to classify each one. If the plot held back was correctly clas-
sified by the others, then it was counted along the diagonal of the error matrix; if not,
it was counted in the row or column where it was "confused." Steele et al. (1998)
have since proposed a new evaluation method based on a true bootstrap process;
however, there is very little difference between the error matrices and percent agree-
ments reported here and those that would be obtained with this new method. The
accuracy of the overall classification and individual land cover categories were both
of interest. In addition, a pixel-by-pixel comparison of the land cover maps can be
used to estimate a percent agreement between any pair of maps, indicating how much
the addition of topographic attributes or a change in the size of the minimum map
unit affects the maps. The percent agreement was computed with the CON function

TABLE 15.2 Summary Statistics for Topographic Attributes

Topographic	 Study Area	 Ground-Truth Sites
Attribute	 Min Max Mean SD Min Max Mean SD
Elevation (m)
Slope (%)
Upslope contributing

area (000 m2)
Steady-state topographic

wetness index
Quasi-dynamic

topographic wetness
index

Incident short-wave
solar radiation (W/m')

695	 1024	 825	 46	 731	 899	 821	 40
0.0	 98.9	 91	 8.2	 0.0	 47.7	 10.3	 91

0.9	 300
	

23.7	 64.7 0.9	 300	 57.5	 98.8

4.03	 24.50 8.00	 2.28 5.02	 16.96 8.34	 2.13

1.64	 2.67
	

2.54	 0.17	 2.17	 2.67	 2.53
	

0.14

77	 196
	

153	 10.6	 125	 185	 152
	

10.5

I!
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in ARC/INFO, which can be applied to either the vegetation maps or stream buffers
in raster (image) format.

15.4 RESULTS

15.4.1 Terrain Attribute Maps
Terrain parameters were computed for an area somewhat larger than the five-
quadrangle remote sensing area (Figure 15.1) to insure that cumulative hydrologic
parameters were complete. The only parts of the TAPES-G upslope contributing area
map that do not have complete catchment coverage are the one-cell-wide drainage
channels of the Little Missouri River and two of its tributaries. USGS 30-m DEMs
were not available for the headwaters of these catchments. However, the channels had
very large values of upslope contributing area by the time they entered the study area,
and the channels were not resolved in the remote sensing image, so this had a negligi-
ble effect on final classification accuracy. The upslope contributing areas computed at
the locations of each of the ground-truth sites were based on complete elevation data.

Output grids from TAPES-G, DYNWET, and SRAD are shown in Figures
15.3-15.8. The differences between the gently rolling upland areas at the eastern
edge of the study area and the rugged wooded draws and badlands in the western
two-thirds of the study area are evident in most of these maps. The abrupt transition
between the rolling uplands in the east and the highly dissected Little Missouri
drainage to the west is particularly prominent in the slope map (Figure 15.3). Flat
areas, shown in dark tones, such as floodplains, river terraces, and depressions in
rolling upland, are clearly visible in the slope map (Figure 15.3). They are also visi-
ble as areas of large upslope contributing area (Figure 15.4) and as wet areas (light
tones) in both the steady-state and quasi-dynamic topographic wetness index maps
(Figures 15.5 and 15.6). Ridge lines appear as dark areas (low upslope contributing
area) and valleys, floodplains, and depressions appear as light tones (high upslope
contributing area) in the upslope contributing area map (Figure 15.4). The distribu-
tion of both topographic wetness indices follows a pattern of high wetness in flatter
terrain and lower wetness on steeper slopes (Figures 15.3, 15.5. and 15.6).

The upslope contributing area and topographic wetness maps (Figures 15.4-15.6)
show numerous spurious linear drainage features trending east—west and confirm
that elevation data quality was visibly lower in the northern and eastern USGS quad-
rangles. Other discontinuities at quadrangle boundaries are visible in the left center
part of Figure 15.4, where the flat river terraces and floodplains are truncated by an

elevation jump across a quadrangle boundary.
The aspect and short-wave solar radiation maps (Figures 15.7, 15.8) reveal simi-

lar patterns; however, topographic shading on north-facing slopes produced a more
complex spatial pattern in the short-wave solar radiation map. The white areas in the
aspect map show areas with zero slopes for which aspects could not be calculated. In
the solar radiation map (Figure 15.8), north-facing slopes receiving 80—I00 W/m2
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N	 0	 Slope (%)	 100

Figure 15.3. Slope map calculated with TAPES-G.

average annual solar radiation are shown in dark tones and southern exposures
receiving 150-190 W/m2 are shown in lighter tones. More variation in radiation
intensity is seen in the badlands (center of map) compared with the gentler rolling
terrain to the east. Figure 15.8 also shows a high-frequency ripple in elevation over
part of the study area, plus a more pronounced low-frequency ripple in the northern
and eastern quadrangles outside the study area.

The magnitude and range of values calculated for each of the topographic attrib-
utes mapped in Figures 15.3-15.8 are summarized in Table 15.2. These statistics por-
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5 k

N	 3.0 Log upsiope drainage area 9.1

Figure 15.4. Upslope contributing area map calculated with TAPES-G.

tray a relatively flat study area (9.2% average slope, 329 m total relief). Topographic
wetness (8.0 mean, 2.3 standard deviation and 2.5 mean, 0.2 standard deviation for
steady-state and quasi-dynamic topographic wetness index, respectively) and inci-
dent short-wave solar radiation (153 and 11 W/m 2 mean and standard deviation,
respectively) varied little in upland areas (i.e., in those cells not traversed by chan-
nels). The corresponding statistics for the 170 ground-truth plots showed that these
locations omitted those cells containing the minimum and maximum values reported
for most topographic attributes. These sites also exhibited slightly steeper slopes,

I



370	 AUTOMATED LAND COVER MAPPING

5km

N	 4.0	 Wetness Index	 24.5

Figure 15.5. Steady-state topographic wetness map calculated with DYNWET.

larger upslope contributing areas, and higher steady-state topographic wetness
indices compared to the five quadrangle remote sensing study area as a whole.

15.4.2 Land Cover Classification Without Topographic Attributes

The accuracy of the initial land cover classification increased slightly (from 54 to
57%) when the minimum map unit was increased from 0.4 to 0.8 ha and was unal-
tered when the minimum map unit was increased again to 2.0 ha (Table 15.3). Six
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141
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II

5km

N	 1.64	 Wetness Index	 2.67

Figure 15.6. Quasi-dynamic topographic wetness map calculated with DYNWET.

additional ground-truth sites were correctly classified in each instance. Correct iden-
tifications fall along the diagonal in Table 15.3 and incorrect classifications fall else-
where. Increasing the minimum map unit produced minor changes in the accuracy of
individual land cover classifications as follows. First, the number of mesic upland
shrub (3201), Rocky Mountain juniper (4214), and riparian grass/forb (6201) sites
correctly identified increased as map unit size increased. Second, the number of
upland broadleaf forest (4102), water (5000), and badland (7601) sites correctly
identified decreased as minimum map unit size increased. Third, the number of crop-

I	 0
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6

5km

N	 0	 Aspect (degrees) 	 360

Figure 15.7. Aspect map calculated with TAPES-G.

land (2100), low grass (3110, 3111), and riparian broadleaf forest (6102) sites cor-
rectly identified varied as minimum map unit size increased.

However, the number of sites affected was small (±3 sites) for all but two of the
classes (mesic upland shrub and riparian broadleaf forest). The errors reveal
numerous trends as follows. Several cropland sites were classified as riparian
broadleaf forest, shrub, or grass/forb. Numerous low grass/low productivity sites
were assigned to the low grass/medium productivity category and vice versa. Sev-
eral mesic upland shrub sites were classified as riparian broadleaf forest. Upland
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5 k

N	 77 Solar Radiation (W m 2 ) 1 96

Figure 15.8. Mean annual short-wave solar radiation map calculated with SRAD.

broadleaf forest was often classified as riparian broadleaf forest. Riparian
broadleaf forest was often assigned to the cropland, upland broadleaf forest, or one
of the other riparian land cover classes (Table 15.3). Several riparian grass/forb
sites were assigned to cropland or one of the other riparian land cover classes.
Overall, these results suggest that there may be no disadvantage to using the larger
mapping unit in the study area, and this level of aggregation was used to evaluate
the results of adding topographic attributes to the final two steps in the classifica-
tion method as reported below.

I	 _nia^
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15.4.3 Adding Topographic Attributes

Table 15.4 shows the effects of adding quasi-dynamic topographic wetness index and
incident short-wave solar radiation to the land cover classification based on a 2.0-ha
minimum map unit. Overall and individual class accuracies changed very little
(± 1-3 sites in each instance), and there was little change in the errors of omission
and comission. The explanation for this result is evident in Table 15.5 which shows
how all of the topographic attributes except slope exhibited a large amount of over-
lap between land cover classes. Both secondary topographic attributes, in particular,
showed a very large overlap between vegetation classes (Table 15.5). Small ranges in
small samples (n !^ 5) may simply reflect a lack of data, but a large range in a small
sample size does provide evidence of a large variance. Classes 3309 (sagebrush),
4214 (Rocky Mountain juniper forest), and 6202 (riparian shrub) have sample sizes
of five or less. The quasi-dynamic topographic wetness indices reached similar max-
imum values of 2.64-2.67 in all classes except Rocky Mountain juniper forest, and
three classes (3110, low grass/low cover; 4102, upland broadleaf forest; 7601, bad-
land) span the entire range of 2.20-2.67 (Table 15.2). Thus, land cover classes were
not well separated by this parameter, and this was reflected in the slight reduction in
classification accuracy when it was added to the Landsat TM data.

In addition, some of the most seriously confused classes, such as 2100 (cropland)
and 6102 (riparian broadleaf forest), showed largely overlapping distributions in both
quasi-dynamic topographic wetness index and incident short-wave solar radiation
(Table 15.5). If steady-state topographic wetness (Figure 15.5) is substituted for
quasi-dynamic topographic wetness (Figure 15.6), a similar overlap exists between
cropland and riparian broadleaf forest. In the case of incident short-wave solar radi-
ation (Figure 15.8), the riparian forest class has the largest range of values. In con-
trast, the slope attribute used in the supervised classification process did exhibit
interesting variations between land cover classes (Figure 15.3). None of the 18 crop-
land sites occurred on slopes greater than 10%, whereas 6 of the remaining II classes
had average slopes> 10% and one (4214, Rocky Mountain juniper forest) occurred
on slopes exceeding 30%. Thus, slope did show less overlap between some land
cover classes than the secondary topographic attributes used in this study (Table
15.5).

15.4.4 Use of Stream Buffers to Delineate Riparian and Upland Cover
Classes

The topographic attributes calculated with TAPES-U can be used to delineate the
channel system, since the channel initiation threshold (drainage density) can be
adjusted to delineate additional channels that are not identified in published USGS
hydrography DLGs. The maximum cross-grading area specified in TAPES-U to
switch from multiple to single flow directions with the FD81F8 and FRho8/Rho8

options was treated as the channel initiation threshold in this study. A maximum
cross-grading area of 20,000 m 2 was chosen because it provided the best match with
the stream lines recorded on 7.5' USGS quadrangles. These "channel" cells were
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used with the 5-rn elevation threshold to delineate riparian and upland areas. This
method designated 16.0% (272 km 2) of the study area as riparian (Figure 15.9) com-

pared to only 11.4% (194 km 2) using the 0.50 by 1° USGS hydrography DLGs (Fig-
ure 15.10). The DEM errors reported earlier produced some spurious drainages
trending east-west in low-relief areas (see east side of Figure 15.9). About 117 km 
was designated as riparian by both methods notwithstanding these problems. Agree-
ment was generally good in the middle sections of well-defined, wooded draws, but
worse in source areas and in flatter rolling upland terrain (cf. Figures 15.3, 15.9, and
15.10). However, the choice of 5 in the elevation threshold may have overesti-
mated riparian areas in both instances because this threshold produced very wide
buffers (!M.5 km) in areas of low relief, such as river terraces and rolling upland (cf.

Figures 15.9 and 15.10).
The computed riparian zones did not match the satellite-based land cover classifi-

cation very well. For example, only 39% of the 365 km 2 assigned to riparian land

cover classes with the initial classification method (2.0-ha minimum map unit) was
located in the riparian areas delineated with the TAPES-C stream network and the 5-
m elevation threshold: Similarly, 47.5% of the TAPES-G riparian area was assigned
to nonriparian land cover classes with the initial classification method, and these
areas should be removed from the modeled riparian zone. We had hoped to be able to
use the riparian zones to separate out riparian and upland land cover classes with sim-
ilar spectral signatures. However, the five upland broadleaf forest training sites clas-
sified as riparian broadleaf forest and four riparian broadleaf forest training sites
classified as upland broadleaf forest with the initial land cover classification (2.0-ha
minimum map unit; Table 15.3C) were not resolved when the USGS and TAPES-G
stream buffers were applied. Overall, these results indicate that different methods and
data sources will delineate very different riparian zones and these may not help with
the correct identification of cover classes that have similar spectral signatures but
grow in different landscape positions. Hence, the riparian zones computed with this
step were not used to revise the land cover maps discussed in the next section.

15.4.5 Evaluation of Land Cover Maps

Land cover maps for a representative area in the southeast -part of the study area are

reproduced in Figure 15.11 (see color insert). Some confusion between cropland and
riparian forest remains in all cases: For example, the rectangular cultivated field in
the lower left corner of the maps is erroneously classified as ponderosa pine or ripar-
ian forest, even when topographic attributes are added to the classification. Changing
the spatial aggregation from 0.4 to 0.8 ha and then 2.0 ha altered some map unit iden-
tifications, but many misclassifications still remained.

Although overall classification accuracy varied little between different levels of
spatial aggregation and topographic attribute combinations, a pixel-by-pixel compar-
ison of the vegetation maps shows substantial differences between them. Percent
agreement between the 36 unique combinations of minimum map unit and classifi-
cation method is summarized in Table 15.6. The addition of topographic attributes
holding minimum map unit size constant generated 67-89% agreement. which
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5km

Figure 15.9. Stream elevation buffer computed from TAPES-Cl stream network.

means that up to 33% of the pixels in the map were reclassified with the addition of
one or two secondary topographic attributes. Figures 15.11 A—C show how the clas-
sification changes with the addition of topographic attributes for the 0.4-ha mapping
unit. Varying the minimum map unit produced even lower agreement, only 34-44%;
in other words, between 56 and 66% of the pixels were reclassified when the level of
spatial aggregation was varied from 0.4 to 2.0 ha. This is evident in Figures 15.1 IA,
D, and E, where the spatial pattern of vegetation patches varies greatly, depending on
the level of spatial aggregation. Ultimately, the choice of minimum map unit is a mat-
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Skin

N

Figure 15.10. Stream elevation buffer computed from USGS hydrography DLGs.

ter of user preference, but since the aggregation process cannot be reversed, it may be
advisable to underestimate the size of mapping unit, to preserve ecologically valu-

able information in small vegetation patches.
Although there is no loss of overall accuracy in a 2.0-ha aggregation, the spatial

pattern of wooded draw vegetation in the LMNG is more difficult to discern in the
aggregated image. For example, the narrow strips of riparian broadleaf forest (class
6102), shown in magenta in the bottom part of Figure 15.1 IC, are visible with a 0.4-
ha minimum map unit, but are replaced with three large patches when the 2.0-ha mm-
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TABLE 15.6 Percent Agreement Based on Pixel-by-Pixel Comparison of Land Cover
Maps

Classification	 L0.4 L0.8 L2.0 W0.4 W0.8 W2.0 80.4 50.8 52.0

Landsa( (0.4 ha)
L,andsat (0.8 ha)
Landsa? (2.0 ha)
Wetnessb (0.4 ha)
Wetness' (0.8 ha)
Wetness' (2.0 ha)
Solar' (0.4 ha)
Solar' (0.8 ha)
Solar' (2.0 ha)

41.7 -
412 36.8 -

	

84.8	 41.2	 43.1

	

41.8	 87.5	 36.8

	

43.2	 36.4	 89.4

	

67.1	 39.9	 40.9

	

39.9	 70.3	 35.6

	

40.9' 34.4	 69.6

42.8 -

	

43.8	 37.5	 -

	

69.8	 40.5	 41.7

	

39.2	 73.8	 35.9
	

41.3 -

	

41.7	 35.9	 71.6
	

42.0 39.0 -

initial (unmodified) classification method.
'Modified classification method plus quasi-dynamic topographic wetness index and specified minimum
map unit.
'Modified classification method plus quasi-dynamic topographic wetness index, short-wave solar radia-
tion, and specified minimum mp unit.

imum map unit is used (Figure 15.1 IE). These large riparian broadleaf forest patches
were classified as either upland broadleaf forest (class 4102), Rocky Mountain
juniper forest (class 4214), riparian grass and forb (class 6201), or riparian shrub
(class 6202) in the three classifications produced using a 0.4-ha minimum map unit
(cf. Figures 15.1 IA-C, F).

15.5 DISCUSSION

The overall results produced in this study (-55% classification accuracy using 12
land cover classes plus water) matches that achieved in other remote sensing classi-
fications of land cover. Higher levels of accuracy can be achieved by merging vege-
tation classes with similar spectral signatures. Table 15.7 shows how a reduction of the
number of land cover classes from 12 to 7 increased overall classification accuracy
to approximately 70% in this instance. However, this strategy is helpful only where
land managers do not want or need to delineate large numbers of land cover classes.

We added two additional topographic attributes to our classification method in
hopes of improving accuracy without reducing the number of land cover classes. We
were clearly unsuccessful and the negligible improvemeht in classification accuracy
gained by adding quasi-dynamic topographic wetness index, incident solar radiation,
and riparian buffers to distinguish upland and riparian vegetation classes would not
seem to justify the use of topographic attributes in remote sensing vegetation map-
ping. Six sets of issues should be investigated further before applying terrain analy-
sis to a large geographic area such as the LIVING:

Utilization of additional ground-truth data and/or satellite imagery

Inclusion of topographic attributes in the first stage of the classification method
used here
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TABLE 15.7 Error Matrices for Generalized Land Cover Classifications Prepared
With Modified Classification Method and One or More Selected Topographic Attributes

A.Landsat TM Bands Plus Elevation and Slope (2.0-ha minimum map unit)

Remotely Sensed Classification

	2100	 3110	 3201	 3309	 4102	 4206	 5000

	

3111	 6202	 7601	 6102	 4214

Field Classification	 6201	 Total

2100	 Ii	 2	 1	 4	 18

(61%)
3110,3111,6201	 2	 41	 I	 4	 5	 I	 54

(76%)
3201, 6202	 I	 3	 7	 4	 IS

(47%)

3309,7601	 I	 3	 14	 18

(78%)

4102,6102	 3	 4	 7	 37	 1	 52
(71%)

4206, 4214	 I	 12	 13
(92%)

5000	 1	 I	 I	 3
(33%)

Total	 18	 53	 16	 19	 51	 13	 3	 173

B.Landsat TM Bands Plus Elevation, Slope, and Quasi-dynamic Topographic Wetness
Index (2.0-ha minimum map unit)'

Remotely Sensed Classification

	2100	 3110	 3201	 3309	 4102	 4206	 5000

	

3111	 6202	 7601	 6102	 4214

Field Classification	 6201	 Total

2100	 10	 2	 I	 I	 4	 18

(56%)
3110.3111,6201	 2	 42	 I	 4	 4	 I	 54

(78%)
3201,6202	 I	 3	 7	 4	 15

(47%)

3309,7601	 I	 3	 14	 IS
(78%)

4102,6102	 4	 2	 6	 39	 I	 52
(75%)

4206,4214	 1	 12	 13
(92%)

5000	 I	 I	 I	 3
(33%)

Total	 IS	 52	 IS	 19	 53	 13	 3	 173

(continued)
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Table 15.7 (Continued)
C. Landsat TM Bands Plus Elevation, Slope, Quasi-dynamic Topographic Wetness
Index, and Incident Short-Wave Solar Radiation (2.0-ha minimum map unity

Remotely Sensed Classification

2100	 3110	 3201	 3309	 4102	 4206 5000

	

3111	 6202	 7601	 6102	 4214
Field Classification	 6201	 Total

2100	 10	 3	 I	 4	 18
(56%)

3110,3111,6201	 I	 43	 I	 3	 4	 I	 1	 54
(80%)

3201.6202	 I	 5	 7	 2	 15
(47%)

3309,7601	 I	 I	 I	 14	 I	 18
(78%)

4102,6102	 4	 3	 7	 37	 1	 52
(74%)

4206,4214	 I	 2	 10	 13
(77%)

5000	 I	 I	 I	 3
(33%)

Total	 17	 56	 Il	 19	 50	 II	 3	 173

'Overall agreemint 71%.
'Overall agreement = 72%.
coverall agreement = 7 1%.	 .
Note. See Table 15.1 for descriptions of individual land cover classes.

Quantification of the DEM error over the ntire Little Missouri region and how
it is propagated with computed topographic attributes

Exploration of the viability and impact of using  more sophisticated topo-
graphic wetness index that incorporates the effects of spatially variable precipi-
tation and evapotranspiration

Inclusion of a more sophisticated buffer algorithm in which the elevation thresh-
old is a function of local vertical relief and/or upslope drainage area, and vali-
dation of the stream elevation buffer results with ground-truth data

Inclusion of additional ancilliary data layers in the classification

The bootstrap results used to assess classification accuracy in this chapter were orig-
inally generated to identify weaknesses in the training data set. The large omission
and commission errors in Tables 15.3 and 15.4 suggest that a larger training set may
have helped. Similarly, multitemporal analysis of Landsat TM or AVHRR imagery
throughout the growing season might have helped to resolve some of the confusion
between the vegetation classes. Cropland, for example, is likely to exhibit rapid
changes in spectral signature due to plowing and harvest, compared with the more
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constant signature of broadleaf forest in the summer months. Time-series remote
sensing has improved accuracy in other large-scale mapping projects (e.g., Pickup et

al. 1993, Samson 1993, Fuller et al. 1994). However, in the Konza Prairie, KS, a
grassland site similar to the LMNG, Oleson et al. (1995) found that cropland and for-
est had considerable overlap in spectral signature at all times during the May to Octo-
ber growing season. Both of these options—collecting more ground-truth data and
using inultitemporal satellite imagery—were prohibited due to limited project funds.

Some improvement might have been gained by modifying the classification

method to accommodate multidimensional combinations of the Landsat TM bands

and selected band transforms as well as the original TM bands. In one such study,

Lauver and Whistler (1993) utilized Landsat TM2, TM4, TMS, TM7, and NOVI to

identify 77 previously unknown natural grassland areas in Anderson County, KS.
The six 30-m TM bands plus NDVI and the TM tasseled cap features of brightness,
greenness, and wetness (Crist and Cicone 1984) were examined in this study, and the
results demonstrated that their final methodology was faster and more accurate than
aerial photographs and aerial surveys. Similarly, Anderson et al. (1993) utilized a sin-

gle Landsat TM scene and showed that it is possible to relate vegetation indices to

green biomass measurements when data are combined in greenness strata for a semi-

arid rangeland study area in northeastern Colorado.
The methodology of Lauver and Whistler (1993) is instructive for the current study

because they performed a multistage classification and filtered the output map to pro-
duce a final map of potential high-quality grasslands of 2 ha or larger. We averaged
topographic attributes before the supervised classification was performed. Ma and
Redmond (1996, personal communication) observed a loss of continuity in riparian
corridors at the 2.0-ha aggregation in other parts of the LMNG. The incorporation of
topographic attributes in the initial classification step may have improved classifica-
tioñ accuracy in this study. At large minimum map units, the computed topographic
attributes are averaged over a large area and this may diminish their impact on the
classification process. Dividing the initial classification into classes based on topo-
graphic • attributes will identify landscape units identified • in traditional maps (see
descriptions in Table 15.1 for examples) and Thay therefore improve classification
accuracy. Dikau (1989) has proposed a landscape classification scheme that divides
catchments (hillslopes) into 16 landform classes based on plan and profile curvature,
two of the attributes computed with TAPES-G. Burrough et al. (2000a, b), in contrast,
have proposed an automated method of landscape classification that incorporates spa-
tial sampling methods, statistical modeling of the derived stream topology, and fuzzy
k-means using the diagonal metric. Either approach might have generated better pre-
dictions, especially if steps were taken to measure and/or eliminate DEM errors.

USGS DEM error varies greatly from quadrangle to quadrangle, and may produce
unacceptable errors in topographic attributes in the rolling upland areas of the Little

Missouri Grassland. The root mean square error (RMSE) of 7 
in is often reported

for 7.5' USGS quadrangles provides a global measure of vertical accuracy that is of
little value in assessing the question of topographic attribute uncertainty (Kumler
1994, Hunter et al. 1995, Hunter and Goodchild 1996). Small errors in the horizon-
tal positions and/or elevations of landforms represented in DEMs may lead to large
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errors in computed primary and secondary topographic attributes (e.g., Wilson et at.
1998). In the LMNG, the 7.5' USGS elevation data are by far the best available:
Quantification of errors is hampered by the lack of a reference data set of accurate
elevations with which to compare USGS data. Florinsky (1998) has proposed a series
of measures of root mean square errors for slope, aspect, plan, and profile curvature
that can be mapped and used to depict the spatial distribution of errors within study
sites. Burrough et al. (2000a, b) have suggested adding random errors to DEMs, cal-
culating selected attributes multiple times, and calculating cell averages to minimize
these errors. Visual inspection of topographic attribute maps can, of course, provide
an excellent qualitative impression of whether the linear patterns of OEM error oblit-
erate terrain features.

A more sophisticated topographic wetness index that incorporates the combined
effects of spatially variable precipitation and evapotranspiration might be more suc-
cessful in discerning vegetation types as well (e.g., Moore et al. 1993e). The level 3
analysis incorporated in WET uses spatially variable net radiation to compute poten-
tial evapotranspiration at each grid cell and then determines soil-water content using
a set of functional relationships based on soil-water content, evapotranspiration, and
deep drainage (see Chapter 4 for additional details). Both evapotranspiration and
deep drainage are dependent on soil-water content using this approach. Similarly, the
TAPFS-G derived buffer should be compared and calibrated, if possible, with
ground-truth data such as field maps or air photos showing riparian areas before pro-
ceeding with a stream buffer calculation over a larger area.

Bendix (1994) examined the role of scale-specific environmental factors in shap-
ing the pattern of riparian vegetation for two mountainous streams in southern Cali-
fornia. Three transverse-scale (distance above water table, flood severity, substrate
texture) and five longitudinal-scale variables (elevation, valley orientation, valley
width, fire history, lithology) were examined. The regression results showed that the
transverse and longitudinal variables jointly influenced the vegetation patterns and
observed patterns along different reaches reflect a subtle combination of overlapping:
gradients. These results may be site-specific and the contribution of longitudinal
variables might be reduced in flatter landscapes such as the LMNG.

This study suggests that local (i.e., site-specific) scale thresholds may be required
to guide the choice of the channel initiation threshold in TAPES-G and the height that
riparian zones extend above stream level. The channel initiation threshold determines
the density of drainage channels and the height threshold determines the width of the
buffers. Adjusting these values to match the observed riparian vegetation may result
in a more useful stream buffer. The calculated stream buffers reproduced in Figures
15.9 and 15.10 suggest that a single height above stream level for the entire area may
not be able to generate suitable buffers in both rolling upland and wooded draw areas.
The buffer height might be estimated as a function of local vertical relief, so that the
height is increased in areas of large vertical relief and reduced in areas of low relief.
Alternatively, the roughness (vertical relief divided by area) of each catchment could
be computed and used to adjust the buffer threshold used with individual streams.
Finally, the threshold could also be scaled by upslope drainage area within each of
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the catchments if longitudinal-scale variables were thought to exert a large impact on
riparian vegetation patterns.

A combination of one or more of these improvements to the terrain analysis meth-
ods may improve results. Additional data layers, such as soil properties and property
ownership, might be of some use in improving performance as well. Moore et at.
(1993b) have demonstrated a strong correlation between soil properties and com-
puted topographic attributes, so soil mapping may not add much new information. In
addition, soils have not been mapped in county soil surveys at sufficient spatial reso-
lution to distinguish the small wooded draws that affect vegetation patterns in the Lit-
tle Missouri Grassland (Thompson 1978). In other areas, where geologic parent
material is more diverse than in the LMNG, soil mapping might improve classifica-
tion accuracy when incorporated into the classification. Property ownership maps
might be of use in identifying cropland, which occurs almost exclusively on private
land, although riparian areas also occur on private land. These riparian areas mean-
der through the complex checkerboard pattern of land ownership in the LMNG, mak-
ing identification by property ownership difficult. This state of affairs illustrates how
disturbance and succession are intertwined in the processes that produce spatial pat-
terns of vegetation in these types of landscapes.

15.6 CONCLUSIONS

The negligible improvement in classification accuracy gained by the use of a quasi-
dynamic topographic wetness index and average incoming short-wave solar radiation
does not appear to justify the considerable effort involved in calculating these topo-
graphic attributes. From this analysis, it appears that the addition of secondary topo-
graphic attributes to remote sensing classifications of semiarid grasslands provides
no significant increase in accuracy. it was hoped that distinctions between similar -
spectral types, such as riparian and upland broadleaf forest in the LMNG, could be
made with terrain analysis, but this hypothesis is not supported by this study. East of
the Little Missouri, in areas with less vertical relief, such as the Grand River, Cedar
River, and Sheyenne National Grasslands, topographic attributes may be of even less
use, since the OEM errors are large compared to the vertical relief. The low relief and
sparse vegetation cover of the LMNG suggest that additional ground-truth data and
multitemporal satellite imagery were required. Both of these options were prohibited
due to limited project funds. The inclusion of topographic attributes in the supervised
classification, quantification of OEM error over the entire Little Missouri region, and
inclusion of additional ancillary data layers may have helped to offset these short-
comings. The results of the current study do demonstrate (I) the benefits of using
modem terrain analysis tools to identify channel systems, and (2) that the final land
cover maps must be used with care because different source data and levels of spatial
aggregation will predict different patterns of existing vegetation.
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