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This article questions the arbitrary selection of input attributes for the definition of landform classes and other
fiat objects that are used to represent the biophysical environment in geographic information science. It suggests
that attribute selection influences the characterization of both geographic and attribute space in these appli-
cations. Hence digital elevation model-based fuzzy c-means landform classification relies on sensible selection
of terrain attributes to generate fuzzy landform classes (memberships) with biophysical meanings. A case study
employed several sets of sensitivity tests and evaluated how selections of terrain attributes may affect the outputs
of fuzzy c-means landform classifications. The results showed an average classification difference of 37 percent
when different numbers of attributes are used and 18 percent when similar terrain attributes are swapped. Effects
of attribute selection also show obvious dependence on spatial resolution and number of classes. These results
indicate that the current approach of selecting terrain attributes (not only for landform classifications but also for
other applications) according to tacit expert knowledge needs to be better justified. Because the fuzzy c-means
classification method is essentially data-driven, the adoption of an exploratory approach as a part of this method
is crucial. Such an approach may help to identify membership distributions (and corresponding classifications)
that summarize the correspondence between landforms and specific biophysical patterns. Key Words: attribute
selection, environmental modeling, fuzzy c-means landform classification.

H
uman decisions are inevitable in the process of
summarizing and classifying landforms, and the
one regarding how to select landform proper-

ties—or terrain attributes—is vital. Ideally, selection
decisions would be based on the purpose of character-
izing/classifying landforms and consequently determining
the biophysical meanings of defined landform classes
or membership patterns, although these meanings may
not be obvious or easily interpretable. At present,
landform properties are usually selected according
to tacit expert knowledge (e.g., MacMillan et al. 2000;
Burrough et al. 2001) with the underlying implication
that the chosen combination of attributes is based
on the best available knowledge. In many cases, how-
ever, this strategy of attribute selection is not well
justified. Pike (1988) indicated that the parametric
characterization and classification of landforms are syn-
thetic, multivariate, and statistical, and he demonstrated
diverse roles of terrain attributes in landslide studies
using a discriminant analysis. Nevertheless, few landform
studies to date have adopted discriminant analysis or
some other type of sensitivity test to support attribute
selection.

Numerous landform properties can be derived from a
digital elevation model (DEM) to describe local terrain

shape, surface location, or landscape context (Moore,
Grayson, and Ladson 1991; Florinsky 1998; Wilson and
Gallant 2000a; Pfeffer, Pebesma, and Burrough 2003;
MacMillan, Jones, and McNabb 2004). Past efforts in
modeling topographic controls on meteorological, hy-
drologic, pedologic, and ecological processes have es-
tablished strong correlations between terrain attributes
and the biophysical environment. For example, Park,
McSweeney, and Lowery (2001) reviewed terrain at-
tributes as key predictors of soil properties based on
evidence from (1) statistical correlation between terrain
attributes and field-measured soil attributes (McKenzie
and Austin 1993; Moore, Gessler, et al. 1993; Gessler,
et al. 1995), (2) classification of terrain attributes based
on predefined criteria (Pennock, Zebarth, and de Jong
1987; Skidmore et al. 1991; Cook et al. 1996; Zhu et al.
1997), and (3) statistical clustering of terrain indices
(Irvin, Ventura, and Slater 1997; de Bruin and Stein
1998; Lark 1999).

The existence of many useful terrain attributes and
the fact that two or more attributes may affect the same
biophysical process with different contributions (e.g.,
Pennock, Zebarth, and de Jong 1987) imply potential
uncertainty in knowledge-based selection of terrain
attributes. Multiple attribute combinations may seem
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equally eligible in the eyes of an expert. This problem is
particularly serious when the purpose of landform rep-
resentation is general or vague. In this context, this
article answers the following research question: How
sensitive are the results of fuzzy c-means (as originally
named by Bezdek 1974; also called k-means) landform
classifications to varying selections (combinations) of
commonly used terrain attributes? Using fuzzy c-means
landform classification as an example is preferred be-
cause, as we describe in more detail later, this is a data-
driven approach to the modeling of biophysical patterns.
Consequently, the meanings of the resultant fuzzy classes
(memberships) eventually depend on the way input data
are organized.

In the next section we outline the theoretical back-
ground of the attribute selection issue by describing its
role in conceptualization, definition, and representation
of geographic objects and classes in GIScience. In that
section we also review fuzzy c-means landform classifi-
cation and provide a novel evaluation of this method as
a synthesizing tool that can be used to explore the
multivariate terrain attribute space. Then, in the fol-
lowing section, we report a case study that includes
several sets of experiments to define the sensitivity of
fuzzy c-means landform classification to (1) including or
excluding specific terrain attributes, (2) swapping certain
primary and secondary terrain attributes, and (3) the
number of incorporated terrain attributes. The final
section summarizes key findings and interprets their
broader importance in the GIScience literature.

Background and Theory

The sharp contrast between precise individual prop-
erties and imprecise, comprehensive (e.g., synthesized or
summarized) definitions of places, categories, and fiat
objects (e.g., Fonte and Lodwick 2004) often confounds
our cognition of the biophysical environment. Tradi-
tional soil and landform classifications offer typical ex-
amples—it is difficult to precisely define variability of soil
attributes while respecting the authority of soil bound-
aries drawn in field-based soil surveys (Burrough 1993),
and it is also difficult to identify a threshold slope gra-
dient to distinguish mountains from no-mountains
(Mark and Smith 2003, 2004), even though mountains
imply higher slope gradients. Other related problems
include (1) the disagreement between people on defi-
nitions of fiat objects and classes, and their boundaries
(Smith and Mark 1998; see Omernik 1995 for another
example); and (2) the distortion caused by applying
categorical knowledge (about what is) to accidental

predictions (about how it is, or the properties) of places
(Smith and Mark 1998).

Most of the aforementioned problems in GIScience
applications may be related to the fact that definitions
of geographic objects are unsatisfactory (Fisher 2000;
Robinson 2003). For example, much attention has been
paid to the fact that crisp representations in GIS do not
match indeterminate or nonexistent geographic bound-
aries in the real world (Burrough and Frank 1996),
thereby revealing the inadequacy of traditional Boolean
logic for the design of spatial databases for GIS (e.g.,
McBratney and Odeh 1997). Other reasons cited for
poor definitions of geographic objects (Robinson 2003)
are ontological confusion (Mark and Smith 2003) and
insufficient knowledge of data quality and accuracy
(Goodchild and Gopal 1989; Guptill and Morrison 1995;
Unwin 1995). However, the issue regarding how at-
tributes (i.e., properties) should be selected to define and
characterize a spatial object has attracted relatively little
attention.

We recognize attribute selection as a fundamental
step in GIScience conceptualizations and representa-
tions of the biophysical environment. It identifies di-
mensions (variables) that are used to describe or
characterize places or objects in attribute space, and is
essential because how objects are delineated in geo-
graphic space depends on how they are represented in
attribute space and on which dimensions are adopted to
specify the attribute space. For example, whether soil
boundaries are fuzzy or crisp depends on (1) whether
continuous soil properties such as soil water content,
instead of crisp ones such as soil class names, are used
to describe soil distributions; and (2) whether gradual
transitions of individual soil properties between data
points are allowed in attribute space. By way of summary,
the accuracy of geographic objects defined in GIScience
may need to be measured not only in terms of spatial or
attribute accuracy, but also in terms of relevancy of the
selected properties or considered variables/dimensions of
the attribute space.

The theory of fuzzy sets, which was first developed by
Zadeh (1965), is useful in the context outlined above.
Within the Earth sciences, this theory has been used
to classify climatic data (McBratney and Moore 1985),
geologic data (Bezdek, Ehrlich, and Full 1984), remote
sensing images (Robinson and Thongs 1986; Fisher and
Pathirana 1990), soil data (McBratney and de Gruijter
1992; Odeh, McBratney, and Chittleborough 1992; Zhu
et al. 1997), and terrain data (Irvin, Ventura, and Slater
1997; Burrough, van Gaans, and MacMillan 2000;
Gorsevski, Gessler, and Jankowski 2003). Fuzzy sets al-
low individual data points to have partial belongings
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(memberships) to multiple classes, and therefore allow
for the existence of overlapped classes that can vary
gradually from one to another. In this way, the spatial
continuity existing in the biophysical environment can
be represented without relying on crisp boundaries in
geographic or attribute space.

Fuzzy c-means algorithms represent a more data-
driven approach to the generation of fuzzy membership
functions. This method was originally developed by
Bezdek (1974, 1981) and Dunn (1973), then generalized
by Bezdek, Ehrlich, and Full (1984). de Gruijter and
McBratney (1988) and McBratney and de Gruijter
(1992) later developed a modified objective function
that accommodates outliers (i.e., extragrades) during
classification. The method starts by randomly allocating
data points into k clusters. The center of each cluster is
calculated as the average (so-called c-mean) of point
attribute values in the cluster. Next, k similarity indices
are calculated for each data point based on the attribute
distances of the data point to k cluster centers. Ac-
cording to these indices, each data point is reallocated to
the most similar cluster. New cluster centers and new
similarity indices can subsequently be calculated. This
process continues until a stable solution (or a threshold)
is reached and k stable cluster centers are established
(Burrough and McDonnell 1998). Instead of calculating
the maximum likelihood to determine whether a data
point belongs to a cluster, the membership mik of each
data point i to class center k is calculated as a scalar
value according to its similarity (or inverse attribute
distance) to the class center. The most commonly used
fuzzy c-means membership function for the calculation of
mik is written as

mik ¼
½ðdikÞ2��1=ðq�1Þ

Pc
k0¼1

½ðdik0 Þ2��1=ðq�1Þ
; ð1Þ

where d is the distance measure (calculated with a se-
lected distance function) that is used to represent the
similarity of a data point i to a class center k, c is the
selected number of fuzzy classes, and q is the exponent of
fuzziness (Burrough and McDonnell 1998). The pa-
rameter q falls between 1 and 1; the larger q is, the
fuzzier the classification is, and q 5 1 produces a classi-
fication that is equivalent to a crisp classification, al-
though it is not solvable with Equation (1). As a result,
each kth class center (represented by a vector of at-
tribute values)—instead of a class boundary—signifies
the existence of a class, and mik necessarily falls between
zero (i has no similarity to k) and one (i is exactly the

same as k), meaning that each data point can have
partial belongings (memberships) to more than one class.

Considerable attention has been paid to the fact that
q and c pose significant influence on the classification
results (McBratney and Moore 1985; Robinson and
Thongs 1986; Odeh, McBratney, and Chittleborough
1992; Burrough, van Gaans, and MacMillan 2000;
Gorsevski, Gessler, and Jankowski 2003). In most cases q
is determined empirically, which may involve a process of
trial and error. This parameter is particularly important
when we have identified a meaningful class center but
need to delineate the way in which similarities of other
data points to this class center decay across the space. In
landform classification, for instance, q will influence how
well the spatial continuity can be ideally reproduced
when spatial covariations of cluster centers between
landform and another biophysical pattern (e.g., soil,
vegetation) have been detected. Indices such as the
fuzzy performance index and normalized classification
entropy (Roubens 1982; Burrough, van Gaans, and
MacMillan 2000) can help in identifying the optimal
partitioning scheme (e.g., number of classes) for the in-
put data.

Burrough and McDonnell (1998, 270–91), in their
discussion of fuzzy classification methods, contrasted the
semantic import (SI) approach with fuzzy c-means clas-
sifications. SI is useful when the user has ‘‘a very good,
qualitative idea’’ of possible class centers and the degree
of fuzziness present in the data. As a result, the user can
identify class centers and then fit a prespecified mem-
bership function to represent spatial continuity (fuzzi-
ness) and to draw fuzzy boundaries for the data, which
would appear as crisp boundaries in traditional classifi-
cations. This approach was adopted in fuzzy soil classi-
fication by Zhu et al. (1997), who first identified typical
soils (central soil concepts) based on expert knowledge
or existing soil maps, and then mapped the soil spatial
continuity according to the spatial continuity of topo-
graphic and other landscape properties.

The fuzzy c-means classification may be more useful
for landform classification than the SI approach because
human definitions of the central concepts of landforms
are so diverse and inaccurate (e.g., hills and valleys;
Mark and Smith 2003), making it impractical to identify
agreeable central concepts prior to classification. Addi-
tionally, it is difficult to fit an existing membership
function to often-heterogeneous landform patterns. The
strengths of the fuzzy c-means method are therefore that
(1) it can synthesize input terrain attributes and gener-
ate more ‘‘natural’’ cluster centers of landforms based on
specific landscape and application situations, and (2) the
spatial continuity (fuzziness) of landforms is represented
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by membership distributions calculated according to at-
tribute distances between data points. Hence the clas-
sification method is more ‘‘objective’’ and data-driven.
This also implies that the strengths of fuzzy c-means
landform classifications rely primarily on the selection of
terrain attributes, or organization of input data. Classi-
fication parameters (e.g., q and c) become important
only when input attributes have been selected in a
meaningful way.

An important characteristic of fuzzy c-means classifi-
cation is that the continuous membership distributions
of class centers are the key output. However, not nec-
essarily all class centers of a classification are equally
useful for a particular classification purpose, and the
optimal partitioning scheme of data does not necessarily
contain the class center that fits well with the applica-
tion purpose. For example, if delineating ‘‘wetness’’ of
places is the main purpose of classification, only two class
centers need to be identified, ‘‘dry’’ and ‘‘wet’’, even
though the optimal number of classes may be more than
two. It is often the case in environmental modeling that
individual biophysical properties, instead of the overall
environmental structure, are of major concern (e.g., Beven
and Kirkby 1979; Moore, Gessler, et al. 1993; Chuvieco
et al. 2004). In this case, how to define one landform
class center (‘‘central’’ concept) and its membership
distribution that could be used to map a biophysical
property—instead of identifying the optimal partitioning
scheme for the entire input data—may become the
primary goal of landform classification. This again indi-
cates that the parameter c in fuzzy c-means landform
classification may not be critical in these situations.

There are two related uncertainty issues in fuzzy c-
means landform classification. First, how to organize data
or select terrain attributes in an optimal way is generally
unknown, although candidate attributes can be listed
based on the terrain–environment relations identified in
previous work. Second, the meanings of landform classes
(memberships) produced with the fuzzy c-means method
need to be post-interpreted, instead of predefined.
Knowledge of landform–environment relations is again
useful in this interpretation process, but this knowledge
can only support a qualitative, imprecise interpretation.

A ‘‘ground truth’’ pattern (e.g., obtained from field
work and/or remote sensing data) that corresponds to
the classification purpose will be needed to evaluate the
classification accurately. When the result is unsatisfac-
tory, the classification may need to be redone, perhaps
with new attributes and parameters. In this case, an it-
erative ‘‘trial and error’’ procedure and, accordingly, an
exploratory attitude toward landform classification, will
be needed to produce a desired landform member-

ship distribution (with appropriate class centers) that
‘‘matches’’ the ground truth pattern of interest.

A complete fuzzy c-means landform classification
procedure may thereby require (1) a clearly defined and
reasonably precise classification purpose to which this
method is applicable; (2) availability of elevation and
environmental data; and (3) an iterative evaluation
procedure that can identify the most useful cluster
center and membership distribution, as well as the cor-
responding attribute combination and classification pa-
rameters, from a series of competing classifications. At a
time when many environmental properties still cannot
be precisely measured across space, this procedure has
the potential of defining application-oriented classifica-
tion schemes that can help to extrapolate known bio-
physical patterns to other places (Burrough et al. 2001),
or to interpolate these patterns to finer spatial resolu-
tions (e.g., close to DEM resolution).

Concerns about the effects of spatial scale or resolu-
tion are ubiquitous in terrain analysis (Moore, Lewis, and
Gallant 1993; J. Wood 1996; Wilson et al. 1998; Evans
2003; Schneider 2001) and terrain-based environmental
modeling (Band 1986; E. C. Wood et al. 1988; Beven
1989, 1997; Moore, Lewis, and Gallant 1993; Zhang and
Montgomery 1994; Band and Moore 1995; Quinn,
Beven, and Lamb 1995; Florinsky and Kuryakova 2000;
Kienzle 2004). For example, a common concern is that
calculated terrain attributes (such as slope and topo-
graphic wetness index) are scale-dependent, and envi-
ronmental models supported by these attributes may
only be valid across a limited range of spatial scales
(Zhang and Montgomery 1994; Band and Moore 1995;
Florinsky and Kuryakova 2000; Kienzle 2004). The scale
dependency of input terrain attributes implies that fuzzy
c-means landform classification may also be scale-de-
pendent. Consequently, the above-described exploratory
classification procedure needs to be able to handle
complications introduced by spatial scales and/or be
applied at multiple scales, since the classification outputs
may differ with varying spatial scales.

The fuzzy c-means landform classification method
assumes the existence of spatial continuity and covari-
ation of the spatial continuity between landforms and
targeted biophysical properties. As a result, it may not be
suitable for natural boundaries (e.g., cliffs, geologic
faults, etc.) and discrete biophysical objects (e.g., vol-
canic craters, deep narrow gorges, etc.). It should also be
used with caution when landforms do not play a signif-
icant influencing role (e.g., in spatial variation of man-
aged or nutrition-stressed vegetation) or when the
spatial variation of a biophysical pattern is controlled
by a threshold process (e.g., at timberline). Another
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limitation of fuzzy c-means landform classification is that
its data-driven nature implies heavy reliance on not only
elevation data but also accurate biophysical data (ground
truth).

The above literature review demonstrates that the
analysis of uncertainty in attribute selection leads to the
need to alter the existing expectations of fuzzy c-means
landform classification. As a result, this classification
method could be more than a landscape-partitioning
tool and can be used to explore the data. Instead of
producing optimal, deterministic, one-step-for-all clas-
sifications, it could serve as a multiscale iterative pro-
cedure that produces classification outputs for specific
application purposes. Some additional work will be re-
quired to support such an approach. A continuing study
by the current authors has automated the fuzzy c-means
landform classification and subsequent pattern compar-
ison procedure, and the case study reported in the next
section uses a series of sensitivity tests to provide some
primary support for this approach.

Case Study

Experimental Design

The case study reported in this section tests the
sensitivity of fuzzy c-means landform classification to
the selection/combination of terrain attributes, so as
to provide evidence and support for an exploratory ap-
proach toward attribute selection. We believe this ap-
proach is necessary in not only fuzzy c-means landform
classification but also in other efforts of delineating
spatial objects/classes. The case study incorporated six
commonly used primary terrain attributes: 1, elevation;
2, slope; 3, aspect (transformed value); 4, plan curva-
ture; 5, profile curvature; and 6, upslope contributing
area, as well as four secondary attributes: 7, distance to
nearest ridgeline; 8, incoming solar radiation index; 9,

topographic wetness index; and 10, sediment transport
capacity index (Wilson and Gallant 2000b). Eight of
these attributes (1, 2, 4, 5, 7, 8, 9, and 10) were also used
by Burrough et al. (2001) in a fuzzy c-means landform
classification of the Yellowstone National Park area.
They selected these attributes based on expert knowl-
edge and used them with a coarse-resolution DEM (100
m) to produce an ‘‘optimal’’ classification scheme of
the data based on the fuzzy performance index and
normalized classification entropy metric. After ‘‘de-
fuzzifying’’ membership distributions into crisp landform
classes, they demonstrated that the resultant class dis-
tributions corresponded well with remotely-sensed land
cover patterns.

Table 1 uses the same attribute codes as presented
above and lists eight pairs of terrain attribute groups.
Fuzzy c-means landform classifications of these attribute
groups were compared to evaluate: (1) the effects of
including or excluding individual terrain attributes
(comparisons a, b, and c); (2) the effects of swapping
primary and secondary terrain attributes (comparisons d,
e, and f ); and (3) the effects of choosing different
numbers of terrain attributes as inputs (comparisons g
and h). In a later section we describe methods used in
this study to measure differences between classifications.
These differences were respectively summarized for each
pair of terrain attribute groups; for three-class, four-class,
and seven-class classification schemes; and at 10-, 20-,
100-, and 200-m resolutions to describe the sensitivity of
fuzzy c-means landform classification to input attribute
selection.

It was argued earlier that the classification parameters
(e.g., q and c) are less important than input data or-
ganization. A practical difficulty in our case study is that
the optimal number of classes may shift with changes in
the input data. In this situation, the difference between
two optimal classifications is the result of both input data
change and variation in the number of classes. Since

Table 1. Comparison scheme for the case study of attribute selection

Comparison First attribute group* Second attribute group* Comparison characteristic

a 1, 2, 4, 5, 7, 8, 9, and 10 1, 2, 5, 7, 8, 9, and 10 4 : in or out
b 1, 2, 4, 5, 7, 8, 9, and 10 1, 2, 4, 7, 8, 9, and 10 5 : in or out
c 1, 2, 4, 5, 7, 8, 9, and 10 1, 2, 4, 5, 8, 9, and 10 7 : in or out
d 1, 2, 4, 7, 8, 9, and 10 1, 2, 5, 7, 8, 9, and 10 swapping 4 and 5
e 1, 2, 4, 5, 7, 8, 9, and 10 1, 2, 4, 5, 6, 7, 8, and 10 swapping 9 and 6
f 1, 2, 4, 5, 7, 8, 9, and 10 1, 2, 3, 4, 5, 7, 9, and 10 swapping 8 and 3
g 1, 2, 4, 5, 7, 8, 9, and 10 1, 2, 4, and 5 secondary attributes: in or out
h 1, 2, 3, 4, 5, and 6 1, 2, 4, and 5 reducing primary attribute number

*1 5 elevation, 2 5 slope, 3 5 aspect (transformed value), 4 5 plan curvature, 5 5 profile curvature, 6 5 upslope contributing area, 7 5 distance to nearest

ridgeline, 8 5 incoming solar radiation index, 9 5 topographic wetness index, 10 5 sediment transport capacity index.
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useful outputs (e.g., cluster centers and membership
distributions) of fuzzy c-means landform classification
may not correspond to the optimal data partitioning
scheme (see the previous section), we assume classifi-
cation schemes with nonoptimal numbers of class cen-
ters can be meaningful too. This allows us to simplify
the problem by (1) ignoring the question of whether the
compared classifications represent the optimal data
partitioning scheme or not, and (2) comparing classifi-
cations with varying input data but the same number of
classes. As a consequence, each of the different groups
of terrain attributes was respectively used to produce
classifications containing three, four, and seven classes.
And all comparisons (Table 1) were conducted between
classifications with the same number of classes. We also
adopted four spatial resolutions (10, 20, 100, and 200 m)
for attribute calculation and classification to demon-
strate how the effects of attribute selection behave across
various spatial scales. The influence of parameter c on
the comparison results was demonstrated by summariz-
ing attribute selection effects across the three adopted
numbers of classes. A uniform q of 1.5 was selected for all
classifications. This choice was based on a visual com-
parison between terrain attribute patterns (elevation,
slope, etc.) and membership distributions generated after
choosing different q (e.g., 1.3, 1.5, 1.6, and 2). It was
found that q 5 1.5 produced spatial continuity of mem-
berships that best matched the spatial continuity of
terrain attributes.

Study Area

The case study area of about 670 km2 covers the
majority of the Santa Monica Mountains, California

(Figure 1). The Santa Monica Mountains extend east–
west along the Pacific coast and are characterized by
medium to steep slopes and an elevation range of 0–940
m. Numerous short, narrow, parallel stream channels
stretch from the central ridgeline north into inland
valleys or south into the Pacific Ocean. Many short
streams produced by the Mediterranean climate run
seasonally along these channels, constitute the major
erosive force, and cut deeply into the mountains. The
high density, short length, and deep-cutting character of
the channels mean that the terrain surface is relatively
rugged (Table 2), and the stream network and landform
structure hierarchies are reasonably well developed. The
dominant vegetation is medium-high to tall chaparral
shrub of varying densities (Stephenson and Calcarone
1999). The natural terrain surface is well preserved in
most of the study area, but human disturbance is sub-
stantial in some locations. This study area contains
coastal plains and various intact coastal mountain pro-
files to the central ridgeline (and peaks), and then to the
inland valleys and plains. Its diverse, erosion-dominant
landforms shaped by water flow and locally modified by
various slope processes (e.g., landslides of various sizes

Figure 1. Santa Monica Mountains case study area.

Table 2. Terrain characteristics of study area, summarized at
10 m

Elevation (m) Slope (%) Roughness (m)*

Mean 325.7 41.34 17.34
Standard deviation 164.78 22.94 7.93
Maximum 948.2 331.59 60.53
Minimum 0.1 0 0

*Roughness was calculated as the local standard deviation of elevations with

a circular moving window that has a uniform radius of 110 m.
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and depths) are common in mountainous areas of the
western United States. In consequence, the results of
sensitivity tests obtained from the case study are likely to
apply to other mountainous landscapes in the western
United States.

Data and Tools

United States Geologic Survey (USGS) 10 m DEMs
for roughly five 1:24 K USGS map quadrangle areas were
downloaded from the GIS Data Depot and resampled in
ArcGIS to 20-, 100-, and 200-m spatial resolutions using
the nearest neighbor method (with a subsequent grid
shift), so that both the original elevation values and their
grid point locations could be preserved. Three sets
of tools were utilized. ArcGIS was used for data pre-
processing, map calculations, and spatial comparisons.
PCRaster (Karssenberg et al. 2001) was used to calculate
terrain attributes. The FNX730 program written by Si-
mon Vriend and Pauline van Gaans of Utrecht Univer-
sity in the Netherlands, based on the fuzzy c-means
algorithms of Bezdek, Ehrlich, and Full (1984) and
McBratney and de Gruijter (1992), was used to produce
fuzzy landform classes.

Calculation of Terrain Attributes

The ten terrain attributes listed earlier were calcu-
lated using PCRaster at 10-, 20-, 100-, and 200-m spatial
resolutions. The same algorithms were used for the cal-
culation of these attributes throughout the study al-
though the details of these algorithms are not described
in this article (for additional details, see PCRaster Ver-
sion 2 Manual). However, the following details need to
be clarified for this research:

1. Elevation values at all resolutions are the original
(grid) point elevation records from the USGS 10-m
DEMs.

2. The method suggested by Copland (1998) was
used to convert measurements of aspect into a new
variable A, where

A ¼ cos ðaspectÞ; ð2Þ

such that values of A range from �1 to 1 and
represent the extent to which a slope faces north
(A 5 1) or south (A 5�1). The A values were
used in place of aspect to represent the amount of
incoming solar radiation in some comparisons.
This conversion is necessary because aspect is
calculated as circular degrees clockwise from 01 to

3601 and is difficult to incorporate directly into
classifications and comparisons.

3. Plan and profile curvatures were both multiplied
by one hundred because their values have a very
small magnitude. However, this does not influence
the classification results since variances of the at-
tributes are changed correspondingly.

4. Upslope contributing area and distance to the
nearest ridgeline were calculated with the D8 flow-
routing algorithm (O’Callaghan and Mark 1984).

5. The topographic wetness and sediment transport
capacity indices were calculated from slope and
upslope contributing area using simplified methods
described by Wilson and Gallant (2000b). The
natural logarithm of the sediment transport ca-
pacity index was used for the classifications and
comparisons.

6. The incoming solar radiation was calculated in a
pair of PCRaster programs that first calculated
the relief and topographic shading effects from
elevation, slope gradient, aspect, and sun height
(according to latitude), and then used this infor-
mation to calculate and accumulate daily incom-
ing solar radiation for each grid point.

Correlation analysis between terrain attributes was
performed at the four resolutions using 699 random
sample points (described in the next section). This
analysis was designed to define the extent of correlation
between the adopted attributes, and to reveal possible
reasons for differences between classifications performed.

Spatial Sampling and Fuzzy c-Means
Landform Classification

A total of 699 points were randomly sampled and used
to develop each of the landform classifications. The lo-
cations of these sample points were identified and mat-
ched at each of the tested resolutions. These sample
points were very sparse (less than one sample per km2),
but they may represent as many as 699 situations (po-
tential cluster centers) in attribute space (i.e., 699
samples in a 940-m elevation range, or more than one
sample for every 2-m relief). Therefore, use of these 699
samples may sufficiently capture strong attribute clusters
(and corresponding landform patterns) that repetitively
occur in attribute and geographic space, which is an
outcome that in most cases well serves the classification
purpose.

Terrain attributes at the sampling points were ex-
tracted and saved in a dBase table as input for the fuzzy
classifier. The weights of terrain attributes were not
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varied in the classification, and the diagonal norm dis-
tance measure, which transforms all classified terrain
attributes to the same magnitude using their sample
variances, was used. For all of the classifications we used
the fuzzy c-means classification algorithm by McBratney
and de Gruijter (1992), which calculates an extragrade
class to diminish the influence of aberrant values. At the
last step, the classification obtained from the sample
points was assigned to the entire study area in PCRaster.
This was accomplished by calculating attribute distances
between each data point and each of the class centers
using the diagonal norm distance function. Conse-
quently, each cell has a membership value (ranging from
zero to one), corresponding to the inverse attribute
distance, for each class in the classification, representing
its similarity to the class center. The entire procedure
was repeated at four spatial resolutions to represent at-
tribute effects at different resolutions. A total of ninety-
six classifications were generated for comparison.

Comparison Methods and Procedures

The possible landscape meaning of the derived land-
form classifications was demonstrated (visualized) with
an example landform class. First, attributes of the land-
form class center were interpreted with reference to the
other class centers and the landform pattern present in
the DEM. The same example was used to visualize how
different attribute selections may influence the mem-
bership distributions and class centers.

A two-step method was designed to compare the
spatial patterns of the classification results. The first step
identified similar class-pairs with the diagonal norm
distance function, which calculates attribute distances
between class centers of two classifications i and j as

dij ¼
X

k

ðaik � ajkÞ2 �
1
s2

k

� �
; ð3Þ

where dij is the attribute distance between two respective
class centers in two classifications (i and j), k signifies the
kth common attribute used by the two classifications,
and s2

k is the sample variance of the kth common at-
tribute. s2

k was used to convert various attribute values
to the same magnitude so that all attributes have the
same weight in the calculation of attribute distance.
After this first step, a class in one classification could be
matched to a certain class in another classification to
form a pair of most similar classes that have the mini-
mum dij, or the minimum accumulated attribute dis-
tance, between the two class centers in attribute space.

The second step incorporates three tasks to measure
the similarity between both similar classes and pairs of

classifications. First, a relative membership difference
surface was generated for similar class-pairs in two clas-
sifications (i and j) by calculating

mij ¼
mi � mj

�� ��
mi þ mj

� 100%; ð4Þ

where cell-by-cell values of mij are the relative difference
between two corresponding memberships mi and mj of
two class centers i and j. As a result, the value of mij

ranges from 0 to 100 percent, indicating the percentage
difference between these two memberships. Second, the
mean and standard deviation of this difference surface
were calculated over the entire study area to represent
how statistically different two membership surfaces are.
Lastly, the means of the membership difference surfaces
for all similar class-pairs of the two classifications were
averaged to represent the overall difference between two
classifications.

Results

Attribute Correlations. Pearson correlation analyses
between all terrain attributes used in this study were
performed at the 699 sample points and correlations be-
tween most attributes proved to be weak. This result is
important to the classification because strong correla-
tions imply overlapped representations of certain cor-
related attributes in the classification, which may con-
sequently cause and hide biased (i.e., nonuniform) as-
signments of weights for these attributes even though
uniform weights for all attributes are implicitly assumed.
The correlation analysis results obtained at the 10-m
spatial resolution are listed in Table 3. At this and all the
other tested spatial resolution(s), the most significant
correlation (�0.81 at a 10-m spatial resolution) is iden-
tified between transformed aspect A and incoming solar
radiation, and the classifications obtained by swapping
these two attributes have been incorporated in the sub-
sequent comparisons.

The comparatively strong correlations observed at the
10-m spatial resolution (bold numbers in Table 3) did
not show obvious change, or trend of change, over other
spatial resolutions. From finer resolutions (10 and 20 m)
to coarser resolutions (100 and 200 m), nevertheless, a
small yet consistent increase of correlations was observed
between some other pairs of terrain attributes (Table 4).
These changing correlations indicate that (1) spatial
scales may impact the computation and interpretation of
classes incorporating the same group of attributes, and
(2) the presumed uniform attribute weights at one scale
may be shifted to nonuniform weights at another scale.
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Fuzzy Landform Classes. Tables 5 and 6 present class
centers for seven-class classifications at the 10-m spatial
resolution, using eight and four terrain attributes, re-
spectively. In both cases, the number of classes (seven)
did not correspond to the optimal partitioning scheme of
the input data. The central concept represented by Class
Center Four (bold numbers) in Table 5 is valley bottoms
of various sizes where water flow converges. This is ev-
ident because (1) the plan curvature is the highest, in-
dicating strong concave contour patterns of narrow
valleys in this class; (2) the proximity to the nearest
ridgeline is comparatively far; (3) the mean topographic
wetness index is the highest; and (4) the mean sediment
transport capacity index is the highest.

Figure 2B can be used to verify the above interpre-
tation. A hard class map for Class Four in Table 5 was
derived by selecting cells whose highest membership
belongs to Class Center Four. This hard class map was
draped on top of the 10-m DEM that had been used to

generate the classification. Strong correspondence is
obvious between DEM-displayed valley locations and
the hard class map for Class Center Four.

The most useful information produced by this classi-
fication is presented in Figure 2A, which is the mem-
bership distribution for Class Center Four in Table 5. If
the interpretation of this class center is correct, this map
shows precisely how similar each point over the land-
scape is to channels or valley bottoms, from the exact
same (membership 5 1) to a total difference (member-
ship 5 0). To go further, this information would be more
useful in the situation where we can identify certain
biophysical phenomena that only (or mostly) occur in
channels or valley bottoms. Then the membership map
can be used to describe the likelihood that these phe-
nomena occur at each location (e.g., point) across the
landscape.

Table 6 presents the result of the four-attribute, sev-
en-class classification. Because secondary terrain at-
tributes that directly describe some biophysical processes
(Wilson and Gallant 2000b) were not used for this
classification, the class centers were more difficult to
interpret than in the case of Table 5. However, the
highest mean plan curvature, a typical indicator of
channel or valley bottom shape, was present in Class
Center Three, indicating that this class center most
likely represents a similar class to valley bottoms. This
conclusion was verified by the hard class map of Class
Center Three shown in Figure 2D, which is also draped
on top of 10-m DEM.

A visual comparison between Class Four in the eight-
attribute classification (Figures 2A and 2B) and Class
Three in the four-attribute classification (Figures 2C and
2D) indicates these two classes are a pair of similar
classes belonging to two different classifications. How-
ever, the change in attribute selection between these two

Table 3. Pearson correlation coefficients between terrain attributes calculated at 10-m spatial resolution

Attributes* 1 2 3 4 5 6 7 8 9

2 0.242
3 0.125 0.044
4 � 0.030 0.020 � 0.021
5 0.041 � 0.027 0.031 � 0.437
6 � 0.108 0.086 0.059 0.335 � 0.199
7 � 0.049 � 0.094 � 0.028 0.028 � 0.089 0.025
8 0.002 � 0.239 � 0.807 � 0.049 0.052 � 0.095 0.006
9 0.198 0.591 0.025 0.342 � 0.222 0.210 0.162 � 0.186

10 � 0.259 � 0.514 � 0.055 0.414 � 0.246 0.361 0.374 0.071 0.015

Notes: Bold face indicates comparatively strong correlations.
*1 5 elevation, 2 5 slope, 3 5 aspect (transformed value), 4 5 plan curvature, 5 5 profile curvature, 6 5 upslope contributing area, 7 5 distance to nearest

ridgeline, 8 5 incoming solar radiation index, 9 5 topographic wetness index, 10 5 sediment transport capacity index.

Table 4. Change of Pearson correlation coefficients over
different spatial resolutions between pairs of terrain

attributes

Attributes* 10 m 20 m 100 m 200 m

4 vs. 5 �0.437 �0.503 �0.577 �0.627
4 vs. 7 0.335 0.412 0.542 0.598
5 vs. 7 �0.199 �0.321 �0.498 �0.570
5 vs. 9 �0.222 �0.338 �0.391 �0.428
5 vs. 10 �0.246 �0.276 �0.375 �0.416
6 vs. 9 0.162 0.214 0.378 0.464
7 vs. 9 0.361 0.444 0.558 0.593

*1 5 elevation, 2 5 slope, 3 5 aspect (transformed value), 4 5 plan curva-

ture, 5 5 profile curvature, 6 5 upslope contributing area, 7 5 distance to

nearest ridgeline, 8 5 incoming solar radiation index, 9 5 topographic wet-

ness index, 10 5 sediment transport capacity index.
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classifications generated noticeable changes in both the
membership distribution and hard class maps. A more
complete and spatially consistent depiction of channel
and valley patterns is provided by the eight-attribute
classification, because the two secondary terrain at-
tributes it used—the topographic wetness and sediment
transport capacity indices—incorporated the effects of
water flow accumulation. This process represents a typ-
ical case of nonneighbor relationships across the land-
scape. In contrast, the four-attribute classification
depicted more ‘‘patchy’’ channel/valley patterns because
the terrain attributes used in this classification only de-
scribe local morphology (slope, and plan and profile
curvatures) or point characteristics (elevation) of the
terrain surface. However, it is encouraging to observe
that the four-attribute classification still produced gen-
erally similar channel/valley patterns to those depicted
by the eight-attribute classification, indicating that
landform patterns of this area show strong self-organi-
zation, so that clusters of various terrain attributes would
co-occur over the landscape.

Evaluation of comparison methods. Table 7 gives an
example of the results that were obtained with the first
step adopted to compare the classifications. Pairs of class

centers with the shortest attribute distances were easily
detected (bold numbers in Table 7). This proved to be an
accurate way of measuring differences between class
centers in attribute space. Using this method, pairs of
similar classes can be identified between classifications
even though the classifications are vastly different in
general. This capacity is also useful for identifying all
interesting cluster centers for an exploratory study of
landforms. However, this step is essentially nonspatial
and a further step is required for accurate comparison of
spatial patterns.

Table 8 gives an example of class-to-class membership
differences between two classifications, which can be
readily linked to membership maps of compared classes
(e.g., Figures 2A and 2C). This step gives the most in-
formative comparison because its cell-by-cell compari-
sons can accurately report differences between spatially
continuous patterns. However, although membership
maps may represent the most accurate way of visualizing
the results of fuzzy c-means classifications, the overall
comparison of the entire classifications is very difficult to
visualize with this final method.

Summary of comparison results. Table 9 lists the re-
sults of the eight comparisons averaged over four spatial

Table 5. Landform class centers for an eight-attribute, seven-center classification at 10 m. Class Center 4 represents a similar
class to Class 3 in Table 6

Attributes* Center 1 Center 2 Center 3 Center 4 Center 5 Center 6 Center 7

1 158.8 289.7 309.3 312.1 369.8 385.2 404.8
2 7.4% 30.3% 49.0% 35.0% 52.7% 41.4% 54.7%
4 �0.11 �0.02 0.54 2.26 �0.24 �1.46 �0.32
5 �0.04 �0.29 �0.67 �1.52 0.26 0.67 0.03
7 10.02 15.15 26.34 20.18 12.24 3.76 13.17
8 1075.6 1027.5 982.6 1029.6 1111.6 1038.0 724.8
9 9.37 7.74 7.56 10.31 6.64 5.98 6.57

10 0.77 3.25 4.06 4.98 3.73 2.85 3.77

Notes: Bold face indicates the central concept represented by Class Center Four.
*1 5 elevation, 2 5 slope, 3 5 aspect (transformed value), 4 5 plan curvature, 5 5 profile curvature, 6 5 upslope contributing area, 7 5 distance to nearest

ridgeline, 8 5 incoming solar radiation index, 9 5 topographic wetness index, 10 5 sediment transport capacity index.

Table 6. Landform class centers for a four-attribute, seven-center classification at 10 m. Class Center 3 (as indicated by bold
numbers) represents a similar class to Class 4 in Table 5

Attributes* Center 1 Center 2 Center 3 Center 4 Center 5 Center 6 Center 7

1 94.0 270.7 302.3 302.7 345.2 453.7 533.3
2 13.5% 58.1% 51.1% 19.2% 57.7% 42.7% 54.2%
4 �0.06 �0.11 2.87 �0.03 �1.63 �0.56 1.04
5 �0.17 �0.35 �3.23 �0.19 1.62 0.50 �0.71

*1 5 elevation, 2 5 slope, 3 5 aspect (transformed value), 4 5 plan curvature, 5 5 profile curvature, 6 5 upslope contributing area, 7 5 distance to nearest

ridgeline, 8 5 incoming solar radiation index, 9 5 topographic wetness index, 10 5 sediment transport capacity index.
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resolutions (10, 20, 100, and 200 m) and three classifi-
cation schemes (three-class, four-class, and seven-class
classifications). Average membership differences (de-
fined previously in the ‘‘Comparison Methods and Pro-
cedures’’ section) of 15 to 39 percent were generated in
the fuzzy c-means landform classification results when
attribute selection was varied for the classification. In-
cluding/excluding terrain attributes or swapping terrain
attributes produced relatively small impacts on the clas-
sification (an average membership difference of 18 per-
cent). In contrast, the number of input terrain attributes
had a much stronger influence (an average membership
difference of 37 percent).

Among the tested terrain attributes, profile curvature
seems to have the weakest impact on the classification
results (with a membership difference of roughly 16

percent, see comparisons b and d), whereas distance to
nearest ridgeline shows the strongest influence (with a
membership difference of 23 percent). Although in-
coming solar radiation is significantly correlated with
transformed aspect A (Table 3), swapping these two
attributes still produced obvious differences (with a
membership difference of 15 percent on average), pre-
sumably because the solar radiation index incorporated
the effects of topographic shading.

Overall, membership differences are characterized by
low mean values and relatively high standard deviation
values, and the same characteristic is observed between
most of the individual comparisons of classification pairs.
This indicates the coexistence of (1) a significant num-
ber of cells with aberrant, large difference values, indi-
cating these cells are very sensitive to the adjustment of

Figure 2. Classification results (and
differences) in a small area, corre-
sponding to Class Centers 4 and 3 in
Tables 5 and 6. The maps show: (a)
membership distribution of Class
Center 4 in Table 5, (b) hard class
map for Class 4 in Table 5 draped on
10-m DEM, (c) membership distri-
bution of Class Center 3 in Table 6,
and (d) hard class map for Class 3 in
Table 6 draped on 10 m DEM.

Table 7. Attribute distances between class centers of two 4-
class classifications at 20-m spatial resolution: four-attribute
classification (C41–C44) versus eight-attribute classification

(C81–C84)

C41 C42 C43 C44

C81 0.005 4.599 4.583 4.629
C82 3.123 0.172 6.479 2.904
C83 3.854 2.599 1.578 0.320
C84 3.615 6.807 0.248 1.305

Notes: Bold face indicates the pairs of class centers with the shortest attri-

bute distances.

Table 8. Membership differences between two 4-class clas-
sifications at 20-m spatial resolution: four-attribute classifi-

cation (C41–C44) versus eight-attribute classification
(C81–C84)

C41 C42 C43 C44

C81 26.96% 59.78% 61.77% 61.01%
C82 58.87% 33.73% 65.28% 58.72%
C83 64.07% 56.80% 53.56% 38.09%
C84 61.25% 68.53% 36.52% 49.10%

Notes: Bold face indicates the pairs of class centers with the smallest

membership differences.
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terrain attributes (also see Figures 2A and 2C); and (2) a
large number of cells with very low membership differ-
ences. This interpretation indicates that the effects of
attribute selection vary over landscapes.

Impact of spatial resolution and number of classes.
Figures 3, 4, and 5 group the results of the eight com-
parisons based on the three types of comparisons: for
individual attribute inclusion/exclusion, for attribute ex-
changes, and for the number of attributes. Each point in
the graphs represents the comparison of one particular
pair of classifications. The variation of spatial resolutions
caused membership differences of up to 15 percent. This
result indicates that the same adjustment of attributes
could cause very different classification effects at differ-
ent spatial resolutions; hence the need to consider spa-
tial resolutions when adjusting or selecting terrain
attributes for fuzzy c-means landform classifications. Fig-
ures 3, 4, and 5 also show differences of up to 25 percent
between different predefined numbers of classes in terms
of the effect of attribute selection on classification re-
sults. For example, including or excluding plan curvature
at 200 m produced a 10 percent change in membership
differences for three-class classifications, but a 31 per-
cent difference for four- and seven-class classifications.

Table 9. Membership differences caused by varying the at-
tribute selections in a fuzzy c-means landform classification.
The results presented are averaged over four spatial resolu-

tions (10, 20, 100, and 200 m) and three classification
schemes (3, 4, and 7 classes)

Comparisons*

Membership difference

Mean Standard deviation

Inclusion/exclusion a 18.39% 16.35%
b 16.13% 15.64%
c 22.68% 19.65%

Exchange d 16.50% 17.39%
e 18.25% 15.61%
f 14.80% 14.72%

Number of attributes g 34.76% 26.86%
h 39.20% 27.60%

*See Table 1 for comparison schemes.
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Figure 3. Percent membership differences over four resolutions and
three classification schemes caused by including or excluding in-
dividual terrain attributes: (a) plan curvature, (b) profile curvature,
(c) distance to nearest ridgeline.
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Figure 4. Percent membership differences over four resolutions and
three classification schemes caused by swapping terrain attributes:
(d) plan curvature versus profile curvature, (e) topographic wetness
index versus upslope contributing area, (f) incoming solar radiation
versus transformed aspect A.
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Discussions and Conclusions

Discussions

An essential argument presented in this article is that
the continuous terrain surface can be conceptualized
and classified in numerous ways (Pike 1988), especially
when the classified terrain attributes are reorganized or
regrouped. However, we are by no means the first to
realize the importance of attribute selection. Burrough

et al. (2001), for example, acknowledged that the eight
attributes they used might not produce the best classifi-
cation result and their attribute list could easily be ex-
tended, even though successful prediction of vegetation
cover was accomplished by their landform classification.
Pfeffer, Pebesma, and Burrough (2003) later used scat-
terplots, correlation analyses, and stepwise regression be-
tween terrain attributes and a series of vegetation scores
to improve the process of attribute selection based on the
same eight attributes. The regression residuals were then
examined using variogram analysis to assist a universal
kriging interpolation of the vegetation scores. A 50 to 60
percent success rate was achieved for the classification.

MacMillan et al. (2000) recognized selection and
computation of terrain attributes as a key challenge for
the representation and interpretation of landform ele-
ments. Their landform classification incorporated three
groups of terrain attributes to represent topographic
control on soil properties and precision agriculture: (1)
slope, aspect, and plan and profile curvatures for their
influence on the movement of water and materials; (2)
topographic wetness index to capture the influence of
soil moisture on crop growth; and (3) a series of eleva-
tion percentile and relief measures to capture the role of
landform position in the formation of soil properties.
However, significant discrepancies were observed when
the classification results were compared with field-
sampled soil properties and crop yield measurements of
canola and wheat.

Table 10 lists some representative landform classifi-
cations that integrate various terrain attributes for gen-
eral or specific classification purposes. Based on the
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Figure 5. Percent membership differences over four resolutions and
three classification schemes caused by number of terrain attributes:
(g) four attributes versus eight attributes, (h) four attributes versus
six attributes.

Table 10. A comparison of attribute selection and classification purposes of selected landform classifications

Author(s) Attributes used for classification Classification purpose(s)

Hammond (1964) Percentage of gentle slopes, relief, general profile character, surface
materials

Regional landform description

Pennock et al. (1987) Slope, plan curvature, profile curvature Soil morphological properties
Pike (1988) Elevation, elevation variance spectrum, slope of slope features, slope

calculated at regular intervals
Landslide mapping

Dikau (1989) Slope gradiant, aspect, plan curvature, profile curvature, size order (scale) Land component mapping
Graff and Usery (1993) Elevation, slope, critical points Identification of mounts
Dymond et al. (1995) Threshold elevation, slope, aspect Land component mapping
Brabyn (1997) Relief, slope, profile type Regional landform description
Irvin et al. (1997) Elevation, slope, tangent curvature, profile curvature, topographic

wetness index, incident solar radiation
Soil-landscape analysis

MacMillan et al. (2000) Four elevation percentiles, local relief, local maximum relief, slope, plan
curvature, profile curvature, topographic wetness index

Precision farming

Burrough et al. (2001) Elevation, slope, plan curvature, profile curvature, proximity to nearest
ridgeline, topographic wetness index, sediment transport capacity index,
incident solar radiation

Forest cover mapping

Gorsevski et al. (2003) Elevation, slope, tangent curvature, profile curvature, topographic
wetness index, incident solar radiation

Landslide mapping
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literature, we summarize a few factors as key contributors
for the difficulty of selecting terrain attributes in these
and other landform classification efforts. First of all,
meaningful attribute selection needs to be guided by
a specific, precisely defined classification purpose. This
factor explains the success of Graff and Usery (1993) in
delineating landform mounts, or locally elevated areas,
from nonmounts using three simple attributes: slope,
elevation, and critical points. In this case, a clearly
(narrowly) defined classification purpose allows a pro-
totype of mounts to be defined. In contrast, clear guid-
ance for attribute selection and agreeable ‘‘prototypes’’ of
landform classes are less available for general-purpose
landform classifications (e.g., Pennock, Zebarth, and de
Jong 1987; Dikau 1989; Dymond, Derose, and Harms-
worth 1995).

Second, there are numerous terrain attributes that
can be computed, but a common practice in landform
classification is to use expert knowledge and select/adopt
a short list of attributes as potential candidates (Dy-
mond, Derose, and Harmsworth 1995; Irvin, Ventura,
and Slater 1997). MacMillan et al. (2000) emphasized
the importance of including contextual terrain attributes
that represent the topographic position of each classified
point. Pike (1988) and Dikau (1989) indicated the need
to consider not only cell- or point-based terrain at-
tributes, but also terrain attributes of landform facets
(objects) that are composed of groups of cells/points.
The spatial scale, particularly resolution and size, is a
fundamental component of these terrain attributes.
However, because topographic position is directly related
to biophysical processes such as soil erosion, and land-
form objects often exhibit internal uniformity of certain
biophysical characteristics (Pike 1988; Dikau 1989),
these two types of attributes are more than outcomes of
coarsening DEM resolutions.

Third, terrain attributes are often correlated to each
other (e.g., the overlap between topographic wetness
index and sediment transport capacity index). Pike
(1988) thereby strove to define a series of complement-
ary attributes of topographic forms to ensure that the
adopted terrain attributes are relatively independent of
each other. However, a more significant issue may be
that overlaps between terrain attributes (or differenti-
ated attribute weights) need to correspond to the vari-
able effects of terrain attributes on the biophysical
property of interest.

Attribute selection is still an uncertain activity in
cases in which we had a clearly defined classification
purpose, a long (‘‘complete’’) list of terrain attributes,
and the desire to consider and incorporate variable
attribute weights. This is because presently (if not

permanently) we cannot define the cause-effect rela-
tionships between landform properties and biophysical
properties. A similar predicament may exist in other
geographic conceptualization, representation, and clas-
sification activities as well. All these require an up-front
enthusiasm to deal with uncertainty in our knowledge
and to adopt a flexible, exploratory attitude in our
analysis. In fuzzy c-means landform classifications, this
enthusiasm can be corralled and implemented with the
iterative, exploratory procedure suggested earlier.

Conclusions

Attribute selection determines what properties will be
used to characterize and define places, objects, and
classes. Although its importance has been insufficiently
addressed in the literature, it is vital to our geographic
analyses. The case study showed that fuzzy c-means
landform classification outputs depend not only on how
many terrain attributes are used, but also on which at-
tributes are used. The classification is very sensitive to
the number of attributes, which caused a 37 percent
difference on average, but swapping similar terrain at-
tributes also caused an 18 percent difference on average.
To make matters more complicated, various tested at-
tributes showed different effects on the classification
results such that the effects of terrain attribute selection
are not uniform over different spatial resolutions or over
different numbers of classes. All these results indicate
that the current approach used to select terrain at-
tributes according to tacit expert knowledge (Irvin,
Ventura, and Slater 1997; Burrough et al. 2001) needs to
be better justified.

The attribute selection issue has particularly impor-
tant implications for data-driven (or DEM-based) land-
scape delineation approaches like the fuzzy c-means
landform classification method. The types of adjust-
ments in attribute selection examined in this study may
disturb class membership distributions or shift definitions
of landform class centers, and it will generally not be
possible to determine in advance which selected at-
tributes give the best classification result. This uncer-
tainty of attribute selection implies the need for an
exploratory approach when we adopt this classification
method. The importance of such an approach is twofold:
it will influence our ability to organize data for mean-
ingful classification, and it will influence our ability to
interpret the classification results. These two outcomes
complement one other and, taken as a whole, indicate
the need for an iterative procedure.

Consequently, an innovative view of fuzzy c-means
landform classification is suggested. First, the member-
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ship distribution and corresponding class center of a
particular landform class are identified, using an iterative
‘‘trial and error’’ procedure, as the ‘‘best match’’ to a
particular biophysical pattern, which may correspond to
a specific application purpose. Second, this membership
distribution and its landform class center are emphasized
as the key outputs of the landform classification. In a
spatially continuous fashion, this output can potentially
be used to delineate the correlated biophysical pattern
in other places or at finer spatial resolutions (e.g., DEM
resolution).

In all, the genetic control of attribute selection on the
definitions of classes (or objects) in attribute and geo-
graphic space is articulated. It is demonstrated that
uncertainty or difficulty pertaining to attribute selection
is entangled with issues such as spatial continuity (or
fuzziness of boundaries), spatial scale, and diversity of
human purposes (Mark and Smith 2003, 2004). The
analysis and case study presented in this article suggest
that (1) optimal attribute selection should be based on
well-defined classification (or object-definition) aims;
and (2) an exploratory approach that challenges the
traditional once-for-all, knowledge-based selection of
attributes is vital for accurate descriptions of patterns
and relationships existing in the biophysical environ-
ment.
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