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DEM resolution dependencies of terrain attributes across a landscape
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§Irving K. Barber School of Arts and Sciences, University of British Columbia

Okanagan, 3333 University Way, Kelowna, BC, Canada V1V 1V7

(Received 3 March 2005; in final form 28 June 2006 )

This paper documents resolution dependencies in terrain analysis and describes

how they vary across landform location. Six terrain attributes were evaluated as a

function of DEM resolution—slope, plan curvature, profile curvature, north–

south slope orientation, east–west slope orientation, and topographic wetness

index. The research highlights the effect of varying spatial resolution through a

spatial sampling/resampling scheme while maintaining sets of indexed sample

points at various resolutions. Tested sample points therefore coincide exactly

between two directly compared resolutions in terms of their location and

elevation value. An unsupervised landform classification procedure based on

statistical clustering algorithms was employed to define landform classes in a

reproducible manner. Correlation and regression analyses identified sensitive and

consistent responses for each attribute as resolution was changed, although the

tested terrain attributes responded in characteristically different ways. These

responses displayed distinguishable patterns among various landform classes, a

conclusion that was further verified by a series of two-sample, two-tailed t-tests.

Keywords: Resolution effects; Terrain attributes; Landform classes

1. Introduction

Concerns pertaining to the effects of spatial scale are ubiquitous, especially in the

context of terrain analysis (Moore et al. 1993b, Fisher 1996, Wilson et al. 1998,

Wood 1998) and terrain-based environmental modelling (Band 1986, Wood et al.

1988, Beven 1989, 1997, Moore et al. 1993a, Zhang and Montgomery 1994, Band

and Moore 1995, Quinn et al. 1995, Florinsky and Kuryakova 2000). Moore et al.

(1993b), for example, identified basic element size, choice of attribute algorithm,

merging of data sources, and scale differences between model and data as key issues

in terrain analysis. With the recent emergence of high-resolution DEMs, two

additional concerns have arisen: (1) appropriate demarcation of geomorphic units at

different scales and (2) calculation of robust terrain attributes at appropriate scales

on high-resolution data (Deng et al. in press a). Responding to these issues, this

paper seeks to answer the following research question: ‘How are calculated terrain

attributes dependent upon DEM resolution across different landform classes

(types)?’
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The study incorporated a two-step, empirical methodology. First, the study area

was partitioned into landform classes using an unsupervised, non-hierarchical

clustering procedure. Second, the effect of changing DEM resolution on calculated

terrain attributes was assessed using correlation and regression analysis. An

assessment was conducted for the entire study area as well as for each landform

class.

The next section of the paper reviews the relevance of the above research question

to terrain analysis. The third section describes the study area, DEM data, as well as

the research design and analytical methods, and the fourth section summarizes the

major findings and interprets the results. Several conclusions and ideas for future

work are offered in the final section.

2. Background

Phillips (1988) suggested that biophysical processes operating at vastly different

spatial scales may be independent of each other. This possibility poses a

fundamental challenge to terrain-based modelling efforts because environmental

models may be valid across only a limited range of spatial scales (Zhang and

Montgomery 1994, Band and Moore 1995, Florinsky and Kuryakova 2000): either

because the studied biophysical processes are scale-dependent or because the models

themselves are scale-dependent. As a consequence, it is essential to investigate and

define the range of data resolution for which the model is applicable (e.g. Bian and

Walsh 1993, Florinsky and Kuryakova 2000). Bian (1997), for example, demon-

strated that apparent correspondence between DEM resolution and data resolution

of various environmental variables (e.g. normalized difference vegetation index, or

NDVI) does not imply that the operational scales of terrain-influenced biophysical

processes (e.g. elevation control on vegetation distribution) are well represented.

Accurate translations between data resolution and representative spatial scales of

the biophysical environment are far from straightforward. This translation process

is nonetheless implicit in every terrain-based environmental modelling effort, with

important consequences for model reliability and validity (Moore et al. 1993b,

Phillips 1988).

The effects of altering data resolution are also poorly understood, and

tremendous difficulties are encountered when environmental models need to be

scaled up or down (Bierkens et al. 2000). Beven (1993, 1997) treated DEM

resolution as an actual TOPMODEL parameter and noted that ‘equifinality’ in

hydrological modelling—the idea that multiple parameter sets may produce the

same simulation outcome—is related to scales of hydrological processes (or ‘laws’)

over the landscape. As a result, it is conceivable that two DEM resolutions can

produce the same modelling result, even though it is not generally known how

interchangeable the DEM resolutions are.

Wood (1998) suggested that measurement of slope at each landscape point varies

with the size of the region over which the slope is derived, and that surface

parameters should be recorded as ranges of values depending on the scale of

analysis. Gallant and Dowling (2003) have gone further by suggesting that it is

problematic to use a single-sized neighbourhood window to estimate terrain

characteristics, and scale-explicit, multi-resolution terrain attributes should be

considered. Deng et al. (in press a) used figure 1 to demonstrate that spatial

resolution change may not only cause point-specific effects on calculated terrain

attributes but also shift the topographic meanings of the attributes at each point. As

188 Y. Deng et al.
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a consequence, spatially aggregated statistical analysis cannot sufficiently capture

the impact of DEM resolution on the calculated terrain attributes, and more

spatially explicit approaches need to be developed. An additional consideration is

that the adjustment of resolution may induce a dramatic change in the number and

location of the evaluated points, implying a shift of the statistical population. This

undermines the accuracy of aggregated comparisons between differing resolutions.

As implemented in this paper, a sampling/resampling scheme is needed to ensure the

spatial coincidence of evaluated points across compared spatial resolutions.

A number of studies have attempted to establish direct, simplified linkages

between DEM resolution, data quality, and modelling uncertainty. For example,

Florinsky and Kuryakova (2000) recommended a three-step procedure to define an

appropriate DEM grid resolution (or resolution range) for the specification of a

particular biophysical property (e.g. soil moisture). This procedure was developed in

a very small study area of the Eastern European Plain, measuring 58 m by 77 m in

size and having a gentle slope (10u on average) and low relief (15 m). The first step

was to calculate a series of terrain attributes (slope gradient, slope aspect, plan

curvature, profile curvature, etc.) from DEMs of varying resolutions (e.g. 1–7 m for

their study area); the second step was to calculate correlation coefficients between

the calculated terrain attributes and the targeted biophysical property; and the third

step was to plot the change in correlation coefficient against DEM resolution. The

resolution range where the calculated correlation coefficients for all tested terrain

attributes show a stable variation in value (e.g. 2.25–3.25 m for soil moisture) is then

accepted as the optimal resolution range for the modelling of that particular

biophysical property.

Zhang and Montgomery (1994) compared cumulative frequency distributions of

calculated topographic wetness index and hydrological simulations over vastly

different DEM resolutions (2–90 m) in two small (0.3 and 1.2 km2, respectively),

moderately to steeply sloped (e.g. 20–40u) western US watersheds. This study

showed that 10 m was the threshold resolution for the studied landscape beyond

which the model quality deteriorated quickly, but below which no significant

Figure 1. Scale effects of terrain analysis. Slope gradients (b1, b2, and b3) for the same point
X are defined in different ways due to the change of spatial resolution. The resultant slope
gradients are different not only in magnitude but also in topographic meaning From Deng
et al. (in press a); used with permission of the authors.
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improvement in modelling results was observed. A more recent study by Kienzle

(2004) emphasized the importance of landscape diversity. Three regular-shaped

study areas (15.21 km2 in size) to represent moderately sloped, gently sloped, and

flat-relief areas in the Rocky Mountain foothill and Great Plains regions were

selected. This study focused attention on the ideal grid DEM resolution that

matched information contained in the source data, which includes both regularly

sampled elevation measurements at a 100-m interval and measurements on

numerous well-selected landmarks. The ANUDEM interpolation method

(Hutchinson 1989) was used to generate the DEMs, and a range of 5–20 m was

identified as the finest resolution that was supported by these input data for the

examined landscape types (i.e. study areas). A similar approach to Kienzle’s (2004)

was employed by Hutchinson and Gallant (2000) in a roughly 4 km2, high relief

(more than 300 m) catchment, who systematically described how the finest-

resolution DEMs could be identified from contour data upon a sufficient

consideration of the topographic structure.

These and other efforts linking DEM resolutions to the data and model quality

have provided valuable ‘rules of thumb’ for the selection of data resolutions in

various landscapes (Moore et al. 1993b, Zhang and Montgomery 1994, Quinn et al.

1995, Mitasova et al. 1996, Florinsky and Kuryakova 2000, Kienzle 2004) and have

improved our understanding of, and confidence in, the adopted data, algorithms,

and models (e.g. Chang and Tsai 1991, Wolock and Price 1994, Wilson et al. 1998,

Gertner et al. 2002). The results of these studies also suggest that recently emergent

fine-resolution DEMs, such as USGS 10 m DEMs or LiDAR/IFSAR 1–5 m DEMs,

may have reached beyond certain threshold resolutions for environmental analysis

(e.g. Zhang and Montgomery 1994). These new data sources of fine-resolution

elevations imply a tremendous opportunity as well as an immediate need to examine

the dependency of environmental modelling analyses on DEM resolution and to

understand important threshold resolutions in terrain analysis.

Owing to the complexity of the spatial scale problem and the general absence of

established guidelines upon which to base decisions, it is often the case that the

practical necessity for coping with the scale issue is reduced to a somewhat arbitrary

selection of DEM cell size at the onset of model construction (e.g. Beven 1989,

Florinsky and Kuryakova 2000, Gertner et al. 2002). This avoids the need for dense

measurement networks (i.e. ground data) on the one hand, and time-consuming

model evaluation on the other. A further expedient is invoked when no

consideration is given to the importance of DEM resolution on model performance

as a function of landform type or terrain surface roughness. In practice, the effects

of spatial scales are often aggregated (averaged) across the entire study area as

statistical variations of terrain attributes corresponding to the resolution change

(e.g. Chang and Tsai 1991, Wolock and Price 1994). In doing so, most local, possibly

site-specific responses to spatial scales are hidden, and it remains unproved as to

whether terrain attributes calculated in different parts of the landscape respond to

the DEM resolution change in the same way. The ramifications of this issue are

most apparent in terrain-based hydrological modelling, where the ability to treat

channel cells and hillslope cells differently is often vital because dynamic and site-

specific scale effects influence channel–hillslope interactions (Quinn et al. 1995,

Gallant and Dowling 2003).

Even though it is widely appreciated that there exists a connection between

landscape locations and DEM resolutions, a formal treatment of this association is

190 Y. Deng et al.
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missing in the literature. For DEM data quality evaluations, for example, the

location of sample points on the landscape has been viewed as an important factor

that is closely related to the accuracy and spatial scale of terrain surface delineations

(e.g. Adkins and Merry 1994, Carrara et al. 1997, Krupnik 2000). Hence, Zhang and

Montgomery (1994) noted the crucial, yet often neglected, role of landscape type in

determining the sampling density for topographic mapping. Hutchinson (1989)

demonstrated that sparse, but well-selected point elevations could be realistically

interpolated to produce high-accuracy DEMs with the assistance of stream network

data and a drainage-enforcement algorithm. A fundamental linkage is thus implied

between landform structure and the effective DEM resolution (meaning the DEM

grid resolution that is well supported by source data or ground-truth). For instance,

sample point locations on the terrain surface (e.g. peak, ridgeline, maximum contour

curvature) are treated as more important to DEM accuracy than sampling density,

and the influence of sampling density should consequently be evaluated in

connection with terrain shape representations (Wilson et al. 1998). Additionally,

not only are sample points viewed as autocorrelated but they should be referenced to

the stream channel network to improve the interpolation accuracy.

To minimize the influence of sampling location on the evaluation of data and

model quality, relatively homogeneous patterns of terrain shape (e.g. uniform

slopes) were sometimes selected for spatial sampling (e.g. Bolstad and Stowe 1994).

A more common approach, nonetheless, is to choose several study areas (sites) with

different topographic characteristics—usually defined visually and qualitatively

using tacit expert knowledge—to represent various landform types (e.g. Moore et al.

1993b, Gao 1997, Kienzle 2004). Even though these (and similar) strategies rely

heavily on expert knowledge, and there is little guarantee that the results obtained

can be reproduced elsewhere, they are still valuable when the effects of landscape

type are difficult to define, which in turn is related to the general lack of techniques

to stratify the landscape in an objective, meaningful, and reproducible manner. The

research reported in this paper addresses this issue within a mountainous landscape

in Southern California. First, it identifies natural clusters of sample points based on

their topographic attributes, using an unsupervised landform clustering scheme.

This classification is data-based and less influenced by human choices but can be

interpreted in reference to DEM elevation patterns or in terms of a terrain

roughness index. Second, the research links so-defined landform classes to the

variation of differences and correlations between attributes that are derived from

DEMs of varying resolutions.

3. Methodology

3.1 Motivating hypotheses

It seems reasonable to assume that the values of various terrain attributes (e.g. slope

or plan curvature) will vary with a change in DEM resolution, as has been

demonstrated in prior studies (e.g. Deng et al. in press a). What is not known is

whether or not the variation is consistent with resolution change for each attribute

(as would happen with continuous increases or decreases of cell sizes) and whether

or not these variations are somehow linked to location (i.e. landscape type). Thus,

the remainder of the paper is framed around two null hypotheses:

N Terrain attribute values calculated from DEMs do not change in consistent

ways when the input DEM resolution is altered.

Terrain attribute resolutions and landscape locations 191
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N The response of terrain attribute values to DEM resolution change does not

vary significantly across landscape locations.

3.2 Description of study area

The study area covers the eastern Santa Monica Mountains, California (figure 2),

which extend in an east–west orientation along the Pacific coast. The study area is

962 km2 in size, which translates into 38 484 560 cells each 565 m in size. The region

contains diverse landforms ranging from flat inland basins and coastal plains to

steep, rugged mountains. Fluvial topography is dominant, and there are numerous

short, narrow stream channels and an occasional wide valley, mostly oriented

north–south. The ephemeral streams drain from the central ridgeline of the Santa

Monica Mountains either north into the inland valleys or south toward the Pacific

Ocean. They constitute the dominant erosive force, and their high density, short

length, and deep-cutting character means that the terrain surface is heavily dissected

and relatively heterogeneous. From the narrow coastal zone, a relative relief of

950 m with a base at the sea level and top at the central ridgeline is reached

progressively within a short distance (about 10 km) and then decreases steadily

towards inland basins and plains. The stream network and landform hierarchies are

not particularly well developed.

Given that the terrain surface in the study area is of a rather specific (although

not unique) nature, it is important to note at the outset that the results of the

study may not be generalizable to other landform assemblages that are

significantly different in character and geometry. Thus, the findings can only

serve to quantitatively define: (1) the extent of the resolution dependency in this

particular landscape type; and (2) how the resolution dependency varies within this

landscape type. However, the qualitative findings regarding the two null hypotheses

Figure 2. Study area DEM. The white inset box indicates the location of maps reproduced
in figures 3 and 4.
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should also hold true in other fluvial dominant landscapes that have similar size

scales (in x, y, z) and runoff erosion extents. The efforts of grouping the diverse

landform components into interpretable classes may also help in extrapolating the

findings for individual landform classes to other regions that have landform

characters similar to a particular landform class defined in this paper (e.g. flat

lowlands or steep slopes).

3.3 DEM source data and DEM sampling/resampling

Seven bare-ground IFSAR (Interferometric Synthetic Aperture Radar) DEMs of

5-m horizontal resolution (corresponding to equivalent coverage of seven

adjoining 7.5-min USGS quadrangles) were used as the source data. Intermap

Co., the producer of these airborne DEMs, reports a vertical accuracy (root

mean square error or RMSE) of 1 m and a horizontal accuracy of 2.5 m for these

data.

The 5-m DEM was resampled using ArcGIS to the following horizontal

resolutions: 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 160, 200, 240, 320, 400,

and 480 m. Unless otherwise indicated, most other data pre-processing, attribute

calculation, map computation and spatial analysis were also performed in ArcGIS.

As indicated in section 2, several analytical challenges arise when comparing terrain

attributes across this range of spatial resolutions. First, the exact locations of grid

points that are to be compared may not coincide at different spatial resolutions. In

this situation, spatially aggregated comparisons of data resolutions are inappropri-

ate, especially in rugged mountainous landscapes where terrain characteristics often

display enormous variation over short horizontal distances. Second, the population

of grid points is small at a coarse resolution, implying unstable statistics. Third,

spatial autocorrelation between neighbouring sample points may be stronger at fine

resolutions because of close sample distances (Wilson et al. 1998).

The first challenge was overcome by adopting a resampling procedure equivalent

to retaining every nth grid point after consistently dropping all the other points to

produce DEMs of coarser resolutions. As a result, all grid points on a coarser-

resolution DEM can be matched to original grid points on finer-resolution DEMs.

The second and third challenges were overcome because this resampling procedure

limited the output resolution to be an integer multiple of the input resolution. As

long as terrain attributes based only on the grid points of the coarsest resolution are

compared, the sample size will be constant at all compared resolutions, and the

influence of variable spatial autocorrelation is minimized because the distance

between neighbouring sample points is uniform for each resolution in the

comparison.

Specifically, three mutually independent sets of points were resampled in this

research, corresponding to sets of grid points at spatial intervals of 320, 400, and

480 m, respectively. Comparisons of resolutions were made for each set of sample

points separately; namely: (1) 5, 10, 20, 40, 80, 160, and 320 m; (2) 5, 15, 30, 60, 120,

240, and 480 m; and (3) 5, 25, 50, 100, 200, and 400 m. Using these coarsest-

resolution sets, the entire study area comprises 9378 grid points (320-m intervals),

6002 points (400-m intervals), and 4171 points (480-m intervals). For each coarse-

resolution sample point, there is a corresponding fine-resolution point at all

resolution pairs in the sample set. After combining results obtained from all three

sets of sample points, conclusions can be drawn based on a relatively complete

variation of spatial resolutions ranging from 5 m to 480 m.

Terrain attribute resolutions and landscape locations 193

D
ow

nl
oa

de
d 

by
 [

18
1.

11
2.

22
8.

71
] 

at
 0

3:
58

 3
0 

Ja
nu

ar
y 

20
16

 



3.4 Terrain attribute calculations

Six terrain attributes were evaluated as a function of DEM resolution—slope, plan

curvature, profile curvature, north–south slope orientation (NS), east–west slope

orientation (WE), and topographic wetness index (W). The first five attributes were

computed using the algorithms of Horn (1981) for slope (%) and Zevenbergen and

Thorne (1987) for plan curvature and profile curvature. W was calculated as

W~ln
As

tanb

� �
ð1Þ

where As is the specific catchment area (m2), and b is slope (u). As was calculated

from the 5-m DEM using the D8 algorithm (O’Callaghan and Mark 1984) in

PCRaster. Pits in the DEM were removed for the calculation of As using the

algorithm suggested by Van Deursen (1995).

NS and WE were derived from aspect, where the latter was calculated according
to Horn (1981). Aspect was not used because it is calculated as circular degrees

clockwise from 0u to 360u, and it is therefore difficult to compare quantitatively (e.g.

there is only a 2u difference between aspects of 1u and 359u whereas the numerical

difference is 358u). The method suggested by Copland (1998) was used to perform

the conversion from aspect to NS and WE, as follows:

NS~cos aspectð Þ ð2Þ

and

WE~sin aspectð Þ ð3Þ

such that values of NS and WE range from 21 to 1 and represent the extent to

which a slope faces north (NS51), south (NS521), east (WE51), or west
(WE521).

3.5 Unsupervised landform classification

Utilizing PCRaster, an unsupervised, non-hierarchical landform classification

method was adopted. This method used an iterative clustering procedure to identify

the most representative clusters within a group of (random) sample grid points
according to their attribute values (Burrough and McDonnell 1998: 283–289,

Burrough et al. 2000 2001). Each of the other grid points was then assigned to one of

the clusters whose attribute distance is the shortest to the grid point, indicating the

greatest similarity. This method signifies a more objective means of landform

classification because it is data-driven and requires little human intervention.

A total of 690 grid points were randomly sampled from the 5-m DEM and used
for clustering on the basis of seven attributes—elevation, slope, ln(As), plan

curvature, profile curvature, NS, and WE. Elevation was extracted directly from the

original 5-m DEM. The ln(As) was used instead of As because the values of As cover

a wide range of magnitudes. Attribute weighting in the classification was varied such

that NS and WE were assigned weights of 0.75 and 0.25, respectively, to represent

their different influence on incoming solar radiation. All other attributes were

assigned a weight of 1. Three methods were then adopted to facilitate the

understanding of the resultant landform classes—by analysing the attribute values
in each class, by visually comparing the classification map with the DEM patterns,

and by using a terrain roughness index.
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It is important to note that a single-resolution landform classification was used to

differentiate the landscape in support of a multi-resolution analysis. As will be

demonstrated in section 4.1, the partitioned landscape at this resolution can be

interpreted in a meaningful way, so as to support conclusions regarding how terrain

attribute sensitivity to resolution change may vary across these landscape types

(locations). However, this approach also poses some limitations to the analysis

because the numerical classification results would be different if the classification

resolution were shifted, thus producing variable definitions of landscape locations

for the same point. In this case, a different landscape structure (e.g. containing fewer

topographic details) may be observed at a coarser resolution (e.g. Bian 1997),

signifying landscape meanings (processes) that correspond to that resolution. For

example, at a very coarse spatial resolution, every point north of the central

ridgeline in the Santa Monica Mountains may be categorized as a part of ‘north-

facing slopes’, even though this point may be placed at the bottom of a valley or top

of a ridge when observed at the 5-m resolution.

3.6 Terrain roughness index

Terrain roughness was quantified using the standard deviation calculated using all

5-m elevations within a local 1006100 m window (containing 400 cells, each of 5 m)

centred on a single grid point. It should be noted that the local window size used for

the calculation of the terrain roughness index is smaller than the sample intervals

that correspond to 320-, 400-, or 480-m grid intervals. As a result, two neighbouring

sample points would not share elevation grid points for the calculation of terrain

roughness index. This ensured that terrain roughness index values of two

neighbouring sample points were independently calculated.

To link terrain roughness to landform class, all grid points whose 565 cell

neighbourhood window at the 5-m resolution was completely contained within only

one landform class were selected. A 25-cell window was used in this step instead of a

400-cell window because an insufficient number of grid points had their 20620 cell

neighbourhoods completely contained within a single landform class. Based on these

selected grid points, the summary statistics of terrain roughness index were then

compared between different landform classes.

3.7 Statistical analyses

The one-to-one spatial correspondence of grid points across each of the sample sets

meant that correlation analysis could be used to assess the effects of changing DEM

resolution. For each pair of neighbouring and non-neighbouring resolutions in a set

of comparisons, the Pearson correlation coefficient (r) was calculated for terrain

attribute values derived at these two resolutions. All results for r at the three DEM

resolution sets were then represented in a single table or diagram to help evaluate the

first hypothesis (section 3.1) and to identify: (1) how r varies between attributes for

pairs of resolutions over the wide range of DEM resolutions and (2) how terrain

attributes vary in their responses to the resolution change. A linear regression was

then applied to each resolution pair. These regression functions, in combination

with the frequency distribution histograms of attribute differences caused by the

resolution change, explain the variation of terrain attribute magnitudes over various

resolutions.
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The same statistical procedure was also applied to the sample points contained in

each of the landform classes—defined by the procedure described in section 3.5—so

as to evaluate the second null hypothesis and identify whether and how responses of

terrain attributes to DEM resolution changes show differing patterns among

landform classes. To confirm the statistical significance of the above analyses, a

series of two-sample (with unequal variance) t-tests were performed between pairs of

landform classes. Based on the significance of differences between sample means, the

t-test provides an insight into whether two sample sets are from the same

population. SAS was used for all the statistical analyses.

4. Results

4.1 Landform classification and interpretation

Six classification schemes containing 2, 3, 4, 5, 6, or 7 landform classes were

generated and evaluated. The 4-class classification was judged the most useful for

subsequent analysis because it differentiated the landform surface to the greatest

extent on the basis of the seven classification attributes discussed in section 3.4 (see

Deng and Wilson 2006, and Deng et al. in press b, for a detailed analysis of attribute

selection and variable attribute weights). This conclusion was reached by calculating

a partition coefficient, F, and a classification entropy, H, for each classification

scheme and then comparing F and H between all classification schemes (cf.

Burrough et al. 2000). The largest difference between F and H represents the greatest

extent of differentiation in attribute space, and this was the case for the 4-class

classification.

Table 1 presents the mean attribute values for the four landform classes.

Landform classes one and two are distinguished from each other on the basis of

oppositely directed NS values, and from landform classes 3 and 4 on the basis of

slope steepness. Landform class 1 was therefore interpreted as ‘steep north-facing

slopes’ whereas landform class 2 was interpreted as ‘steep south-facing slopes’.

Landform classes 3 and 4 both have gentle slopes and similar slope orientations, but

class 4 has the gentlest slope gradients, lowest elevations, and greatest As values. In

contrast, class 3 has higher elevations, negative (i.e. convex) profile curvature, and

the smallest As values. Therefore, class 3 was interpreted as ‘localized highlands’ (i.e.

ridges, crests, and hilltops), whereas class 4 was interpreted as ‘lowland’ features

such as footslopes, valley bottoms, and stream channels. Interestingly, the mean

elevation for class 3 is lower than classes 1 and 2. This is because steep slopes are

Table 1. Mean attribute values within each landform class.

Landform classes

1 2 3 4

Elevation (m) 450.43 426.32 336.91 249.58
Slope (%) 54.02 55.12 27.30 14.05
ln(As)

a 5.55 5.76 4.19 6.73
Profile curvature 0.3944 0.5145 20.4906 0.7311
Plan curvature 20.8024 20.9476 0.8894 20.9180
NS 0.6523 20.6681 20.0835 20.0652
WE 20.0421 0.0046 20.0099 0.0417

aAs is in m2.
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mostly located in high-elevation areas, whereas localized highlands occur through-

out the landscape in high-, intermediate-, and low-elevation regions.

The above interpretation of landform classes was verified by visually comparing

the landform class map (figure 3(c)) with the DEM (figure 3(a)). Stream channels,

ridgelines, and north- and south-facing slopes observed on the DEM map were

correctly classified into the aforementioned landform classes. Table 2 and figure 3(b)

and (c) show that the landform classes can also be interpreted in terms of terrain

surface roughness. Landform classes 1 and 2 have a much higher mean and

maximum terrain surface roughness, indicating that the two steep landform classes

display a large variation in elevation. Class 3 and class 4 have a much lower terrain

surface roughness, indicating that they are relatively flatter than classes 1 and 2. This

Figure 3. Comparison of 5-m DEM elevation (a), terrain surface roughness (b), and
landform classes (c).

Table 2. Correspondence between terrain surface roughness and landform classes.

Terrain surface roughnessa

No. of samplesbMean SD Maximum Minimum

Landform class 1 15.561 3.848 39.492 2.966 479
Landform class 2 16.742 4.680 36.624 1.461 616
Landform class 3 3.828 3.554 21.456 0 3415
Landform class 4 1.416 1.549 15.468 0 1564

aTerrain surface roughness was calculated as the standard deviation of elevations in a 20620
local window of the 5-m DEM.
bThese samples include those grid points whose 565 neighbourhoods on the 5-m DEM are
completely contained by one landform class.
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is especially true for the case of class 4, which displays the lowest mean and standard

deviation in terrain surface roughness, implying that this is a relatively

homogeneous landform class.

4.2 DEM resolution coarsening

Terrain attributes centred on sample points were calculated for all resampled

resolutions while maintaining the same set of 5-m grid-point elevations used at the

outset. Hence, the variation in grid-point interval (i.e. resolution) is by default the

dominant factor causing the differences in attribute values between DEMs of two

resolutions. The effects of spatial sampling, resampling, and interpolation are

avoided with this scheme.

Figure 4 shows that attribute values can vary dramatically with a change in

resolution, even though the general pattern of attribute distribution is preserved

across a range of resolutions. Summary statistics plotted in figure 5 show that terrain

attributes vary in predictable ways as a function of DEM resolution. For example,

both the mean and standard deviation of slope decrease slowly with the coarsening

DEM resolution, while maximum slope decreases sharply. This sharp decrease in

maximum slope may be explained, in part, by the small-scale ruggedness of

topography in the study area. In contrast, all statistics involving W tend to increase

with coarsening resolution, and this is especially true for the mean, minimum, and

maximum. This may be related to the fact that W is a ratio and that: (1) calculated

slope decreases with coarsening resolution; and (2) minimum As increases with

coarsening resolution. Large variations in the maximum and minimum profile

curvature and plan curvature are apparent in figure 5, although the mean and

standard deviation of these two attributes vary little with the resolution change. This

indicates that the incidence of convex slopes is similar to that of concave slopes at all

resolutions. More importantly, for this landscape type, plan and profile curvatures

calculated from coarsening resolutions lead to a false conclusion that the

topography is much smoother and gently rounded than it actually is.

4.3 Attribute correlations across resolutions

The Pearson correlation coefficient (r) was used to describe the nature (i.e. positive

or negative) and strength (i.e. magnitude) of association between each of the

resolution pairs within the three sample data sets (section 3.3). Large positive values

of r suggest that there is little difference between attribute values calculated for pairs

of spatial resolution. Figure 6 and table 3 show that the coarsening DEM resolution

causes a consistent decrease in r for all analysed terrain attributes. This is contrary

to the first null hypothesis in section 3.1 and indicates that the values of terrain

attributes calculated for coarser grid intervals begin to deviate in a consistent way

from those calculated at 5-m grid intervals. Decreasing values of r with coarser

resolutions also indicate that the exact manner in which the attribute deviates from

the fine-resolution case becomes less predictable (i.e. decreasing correlation). It is

noteworthy that for this landscape, all calculated r values between the compared

resolutions (5–480 m) were positive for all the evaluated attributes. This finding may

Figure 4. Distribution patterns of terrain attributes at different spatial resolutions. All maps

cover the same area as figure 3. Light colours represent larger values, and dark colours

represent smaller values.
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Figure 5. DEM resolutions (5 m, 25 m, 50 m, and 100 m) and statistical variation of terrain
attributes—slope (a), topographic wetness index (b), profile curvature (c), and plan curvature
(d). The statistics were calculated from the same set of points (96 100 samples) that
correspond to the DEM grid points at the 100-m spatial resolution.
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Figure 6. Pearson correlation coefficients (r) between terrain attributes of 5 m and other
resolutions. Three sets of sample points are used, corresponding to 320-m grid points (9378
samples), 400-m grid points (6002 samples), and 480-m grid points (4171 samples),
respectively.

Table 3. Pearson correlation coefficients (r) between attributes of different resolutions.

Resolution
(m) 5 10 15 20 25 30 40 50 60 80 100 120 160 200 240

(a) Slope
10 0.99
15 0.97
20 0.95 0.98
25 0.93
30 0.91 0.97
40 0.87 0.91 0.96
50 0.85 0.95
60 0.82 0.87 0.94
80 0.78 0.80 0.85 0.92
100 0.74 0.82 0.91
120 0.72 0.75 0.81 0.90
160 0.67 0.69 0.72 0.77 0.88
200 0.65 0.70 0.76 0.87
240 0.62 0.65 0.68 0.74 0.86
320 0.57 0.59 0.61 0.65 0.72 0.85
400 0.56 0.59 0.63 0.70 0.82
480 0.53 0.55 0.58 0.61 0.67 0.82
(b) Profile curvature
10 0.84
15 0.74
20 0.63 0.85
25 0.60
30 0.51 0.82
40 0.42 0.59 0.81
50 0.42 0.81
60 0.36 0.59 0.81
80 0.30 0.42 0.59 0.79
100 0.30 0.58 0.77
120 0.27 0.43 0.57 0.77
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Table 3. (Continued).

Resolution
(m) 5 10 15 20 25 30 40 50 60 80 100 120 160 200 240

160 0.21 0.30 0.43 0.57 0.75
200 0.21 0.43 0.56 0.74
240 0.18 0.29 0.39 0.55 0.74
320 0.15 0.23 0.32 0.44 0.56 0.73
400 0.16 0.33 0.43 0.55 0.72
480 0.13 0.21 0.28 0.41 0.55 0.72
(c) Plan curvature
10 0.88
15 0.79
20 0.71 0.88
25 0.67
30 0.59 0.85
40 0.49 0.64 0.82
50 0.46 0.82
60 0.37 0.57 0.79
80 0.30 0.38 0.52 0.77
100 0.26 0.51 0.74
120 0.19 0.32 0.46 0.73
160 0.17 0.22 0.30 0.45 0.71
200 0.14 0.28 0.44 0.72
240 0.09 0.17 0.27 0.46 0.72
320 0.11 0.15 0.19 0.28 0.45 0.70
400 0.06 0.15 0.26 0.43 0.68
480 0.04 0.09 0.15 0.28 0.46 0.68
(d) NS
10 0.98
15 0.95
20 0.92 0.96
25 0.89
30 0.86 0.93
40 0.81 0.84 0.92
50 0.77 0.90
60 0.73 0.80 0.90
80 0.68 0.70 0.77 0.88
100 0.65 0.76 0.88
120 0.59 0.65 0.73 0.87
160 0.55 0.57 0.63 0.72 0.86
200 0.52 0.62 0.72 0.85
240 0.45 0.50 0.57 0.69 0.83
320 0.44 0.46 0.51 0.58 0.69 0.83
400 0.42 0.50 0.57 0.68 0.81
480 0.36 0.41 0.46 0.56 0.66 0.81
(e) WE
10 0.98
15 0.95
20 0.92 0.95
25 0.88
30 0.85 0.93
40 0.80 0.84 0.91
50 0.75 0.90
60 0.72 0.79 0.90
80 0.67 0.70 0.76 0.88
100 0.62 0.74 0.87
120 0.57 0.63 0.73 0.86
160 0.54 0.56 0.62 0.71 0.84
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be explained by the generally rugged terrain surface shape in this landscape, which

displays increasing randomness across greater distances. However, this observation

needs to be revisited in other landscapes (e.g. flatter landscapes).

The six attributes shown in figure 6 display different trends in r with coarsening

resolution. Slope displays the smallest reduction in r, from 1.00 to a value of 0.53 at
480 m spacing. This indicates that slope values calculated at very coarse resolutions

(such as 400 m and 480 m) are reasonably well correlated to the 5-m slope values in

this landscape, which may be explained by the ubiquitous high-relief topography

characterized by long, steep slopes. Wetness index, W, on the other hand, shows a

much sharper decrease in r, which is quite pronounced even from 5 m to 10 m

(r50.85). Thus, the threshold DEM resolution for the calculation of W in this

landscape may need to be defined as ,10 m or even 5 m. This finding affirms the

previous findings that the calculation of W is very sensitive to DEM resolution
(Zhang and Montgomery 1994, Florinsky and Kuryakova 2000). However, this

sensitivity may be highly dependent on the type of landscape, a point that will be

discussed later. A large amount of variability exists between attributes within the

resolution range of 5–20 m, which was identified by Kienzle (2004) as the optimal

range for representation of terrain information in the Rocky Mountain foothills and

Great Plains. For example, the 20-m W shows a relatively weak correlation with 5-m

W (r50.73) in our study area, whereas for slope, r is 0.95 between the 5 m and 20 m

resolutions. Correlation trends for aspect (NS and WE) are similar to those of slope
with relatively large r up to a resolution of 200 m. Profile and plan curvatures show

the sharpest drop of r among all attributes, even at fine resolutions, and at coarse

resolutions the correlation is very poor to fine-resolution values. In combination,

these results indicate that the depiction of terrain surface shape in this rugged

landscape is highly sensitive to spatial resolution of the DEM, which suggests that

caution needs to be exercised when extracting landscape characteristics from a DEM

for purposes of environmental modelling.

A series of linear regression analyses between all combinations of spatial
resolutions were performed using only slope and W to assess terrain attribute value

changes with varying DEM resolution. The results for slope show that the gain, b, in

Resolution
(m) 5 10 15 20 25 30 40 50 60 80 100 120 160 200 240

200 0.46 0.56 0.66 0.81
240 0.44 0.48 0.54 0.65 0.79
320 0.40 0.42 0.46 0.53 0.63 0.78
400 0.32 0.39 0.47 0.57 0.76
480 0.32 0.35 0.39 0.47 0.57 0.74
(f) Wetness
10 0.85
15 0.78
20 0.71 0.81
25 0.66
30 0.63 0.79
40 0.58 0.66 0.78
50 0.54 0.77
60 0.51 0.62 0.77
80 0.50 0.55 0.64 0.78
100 0.46 0.63 0.77
120 0.46 0.54 0.63 0.77

Table 3. (Continued).
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y5a + bx (where y is the value of slope calculated at fine resolution, and x is the

slope calculated at a coarse resolution) is always larger than 1, whereas the offset, a, is

always positive. In addition, there is a consistent increase in the values of a and b with

the coarsening of spatial resolution. This reaffirms that slope values calculated at a

coarse resolution (up to 480 m) are consistently smaller than those calculated at fine

resolution in this landscape. The results for W, on the other hand, show a consistent

decrease in b while the change in a is relatively small and inconsistent, indicating a

consistent increase in W values with the coarsening of DEM resolution. However, this

conclusion (for W) is based on a relatively low confidence level (table 3f).

The trends discussed above are supported by frequency histograms of slope and

W variations with change in DEM resolution (figures 7 and 8). Figure 7 shows that

the difference in slope values between pairs of DEMs at differing resolutions

becomes increasingly positive with coarser resolution, which supports the conclusion

that calculated slope values decrease consistently with the coarsening resolution.

However, the existence of negative differences indicates that this generalization

cannot be applied to all grid points. In contrast, figure 8 displays a shift toward

negative difference values for W, which indicates that W values consistently increase

with progressive coarsening of DEM resolution.

4.4 Landform-specific patterns of correlation decrease

Figure 9 presents the coefficient of determination r2 between terrain attributes of 5 m

and the other resolutions for each of the four landform classes separately. r2 (instead

Figure 7. Frequency distributions of slope differences between 5 m and other resolutions: (a)
10 m, (b) 25 m, (c) 50 m, and (d) 100 m. The values on the x-axis are obtained by subtracting
slopes for the aforementioned DEM resolutions from slopes derived with the 5-m DEM on a
point-to-point basis.

204 Y. Deng et al.

D
ow

nl
oa

de
d 

by
 [

18
1.

11
2.

22
8.

71
] 

at
 0

3:
58

 3
0 

Ja
nu

ar
y 

20
16

 



of r) was used in figure 9 to visually exaggerate the difference in correlation when r is

positive and close to 1. Different patterns of r2 decrease are evident between

landform classes for all attributes when the DEM resolution is coarsened from 5 m

to 480 m. This observation addresses the second null hypothesis and supports the

general conclusion that different responses to resolution change occur for different

landform classes, at least for the six analysed terrain attributes in the current study

area. Tables 4 and 5 contrast the different patterns of correlation (r) decrease for

landform classes 1 and 3 using slope and W as examples. The general conclusion

that r decreases in a different way as a function of landform class holds true not only

between 5 m and other resolutions, but also between all compared pairs of

resolutions. The same characteristic was observed for other terrain attributes,

although those results are not presented here.

Figure 9 shows that very different patterns of decrease in r2 are evident from one

terrain attribute to another. Slope displays the largest variation between landform

classes. Landform classes 1 and 2, corresponding to steep south- and north-facing

slopes, show a similar pattern of r2 decrease pattern, and the same is true for

landform classes 3 and 4. Slopes on landform classes 1 and 2 were much more

sensitive to resolution change, especially when the resolution was coarser than 15 m.

Beyond the 50 m resolution, calculated slopes on classes 1 and 2 show very low

correlations with the 5 m slopes. W showed similar patterns to slope: W on landform

classes 1 and 2 is more sensitive to DEM resolution change. However, a sharp drop

in r2 between 5 m and 10 m was observed on all landform classes, and very low r2

Figure 8. Frequency distributions of W differences between 5 m and other resolutions: (a)
10 m, (b) 25 m, (c) 50 m, and (d) 100 m. The values on the x-axis are obtained by subtracting W
for the aforementioned DEM resolutions from W derived with the 5-m DEM on a point-to-
point basis.
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Figure 9. Landscape variation of the coefficient of determination (r2) between terrain attributes of 5 m
and other resolutions (all r values are positive). Graphs (a) and (b) are for slope, (c) and (d ) are for profile
curvature, (e)and(f )are forplancurvature, (g)and(h)are forNS, (i)and( j)are forWE, and(k) is forW.
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values were calculated for all resolutions coarser than 15 m on all landform classes,

indicating that it is probably inappropriate to calculate W at a resolution coarser
than 15 m in all landscape types of the study area. The differentiation between

landform classes was also less pronounced for W than for slope.

Profile and plan curvatures experienced a relatively sharp r2 decrease for all

landform classes. Profile curvature on landform class 3—ridgelines and local

highlands—was slightly less sensitive to resolution change than other classes, and

plan curvature on landform class 4—valley bottoms and stream channels—was

slightly less sensitive to the resolution change than other classes. These
characteristics may be explained by the fact that similar concave plan curvatures

in the valley bottoms and convex profile curvatures on hilltops and ridgelines can be

Table 4. Correlation coefficients (r) between slopes of various resolutions on (a) landform
class 1 and (b) landform class 3a.

Resolution
(m) 5 10 15 20 25 30 40 50 60 80 100 120 160 200 240

(a) Landform class 1
10 0.97
15 0.93
20 0.84 0.93
25 0.79
30 0.76 0.90
40 0.66 0.75 0.90
50 0.60 0.88
60 0.55 0.68 0.86
80 0.48 0.55 0.67 0.84
100 0.41 0.61 0.82
120 0.43 0.51 0.62 0.81
160 0.32 0.37 0.43 0.54 0.76
200 0.28 0.42 0.57 0.80
240 0.32 0.39 0.47 0.57 0.77
320 0.20 0.22 0.27 0.34 0.49 0.76
400 0.16 0.26 0.37 0.51 0.74
480 0.14 0.21 0.28 0.35 0.47 0.72
(b) Landform class 1
10 0.99
15 0.96
20 0.94 0.97
25 0.92
30 0.90 0.96
40 0.86 0.89 0.95
50 0.83 0.94
60 0.81 0.86 0.93
80 0.76 0.78 0.83 0.92
100 0.73 0.81 0.91
120 0.71 0.75 0.80 0.90
160 0.65 0.67 0.70 0.76 0.88
200 0.64 0.69 0.76 0.87
240 0.60 0.63 0.66 0.73 0.85
320 0.55 0.57 0.60 0.64 0.71 0.84
400 0.55 0.59 0.64 0.70 0.83
480 0.52 0.54 0.56 0.61 0.67 0.81

aClass 1 represents north-facing slopes, and class 3 represents local lowlands (valley bottoms,
stream channels, and coastal plains).
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observed at a wider range of DEM resolutions. The class differentiation for the two

curvatures is most pronounced at a resolution range of 20–60 m. However,

curvatures at resolutions coarser than 30–40 m have a very low or no correlation

with the 5-m curvatures on all landform classes, indicating that coarser-resolution

curvatures depict a different terrain shape from that observed at the 5 m resolution.

WE experienced two patterns of r2 decrease at a 20–120-m resolution range:

landform classes 3 and 4 experienced a greater change (i.e. a higher sensitivity) than

classes 1 and 2. This pattern may be a consequence of the density and magnitude of

north–south-oriented stream channels and corresponding ridgelines (figure 2) in this

particular study area.

4.5 t-tests on selected attributes and resolutions

In order to address the second null hypothesis, a series of t-tests were conducted to

confirm the general, empirical observation obtained from section 4.4 that terrain

attributes of different landform classes respond differently to the resolution change.

The slope difference and W difference between 5-m and several selected

resolutions—10, 25, 50, and 100 m—were compared for each pair of landform

classes. Only grid points whose entire 565 cell neighbouring areas on the 5-m DEM

were completely contained by one landform class were selected for these t-tests. This

Table 5. Correlation coefficients (r) between W of various resolutions on (a) landform class 1
and (b) landform class 3a.

Resolution
(m) 5 10 15 20 25 30 40 50 60

(a) Landform class 1
10 0.73
15 0.59
20 0.47 0.65
25 0.41
30 0.36 0.65
40 0.31 0.43 0.70
50 0.23 0.70
60 0.19 0.39 0.68
80 0.19 0.27 0.48 0.72
100 0.12 0.44 0.67
120 0.11 0.23 0.32 0.52
(b) Landform class 3
Resolution
(m)

5 10 15 20 25 30 40 50 60

10 0.76
15 0.69
20 0.63 0.75
25 0.60
30 0.58 0.73
40 0.53 0.59 0.73
50 0.53 0.74
60 0.48 0.56 0.73
80 0.52 0.54 0.61 0.76
100 0.50 0.61 0.73
120 0.48 0.51 0.59 0.74

aClass 1 represents north-facing slopes, and class 3 represents local lowlands (valley bottoms,
stream channels, and coastal plains).
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effectively reduces the influence of spatial heterogeneity (noise) present in landform

class patterns (figure 3c), which often arises after non-hierarchical clustering of local

terrain attributes. The resultant numbers of tested sample grid points are 479, 616,

3415, and 1564 for classes 1, 2, 3, and 4 (section 4.1), respectively. The results of the

t-tests are reported in table 6 for slope and table 7 for W.

The null hypothesis of no difference between the means for slope could not be

rejected for landform classes 1 and 2, indicating similarity in response of slope to

resolution change. However, the null hypothesis was rejected for all other

combinations of landform classes because the differences were so large that they

could not have occurred by chance if the two samples were drawn from the same

population. This result shows that slope calculations respond differently to a DEM

resolution change on steep slopes (classes 1 and 2), local highlands (class 3), and

local lowlands (class 4). Table 7 shows that the response of W to DEM resolution

change is relatively uniform for landform classes 1, 2, and 4. However, landform

class 3—local highlands or ridgelines—gave significantly different responses from all

Table 6. Two-tailed t-tests for the slope differences between landform classes using the 5-m
and four other resolutions: (a) 10 m, (b) 25 m, (c) 50 m, and (d) 100 ma.

(a)

Class

1 2 3

Class 2 3.06
3 9.25 7.17
4 13.66 12.62 8.83

(b)

Class

1 2 3

Class 2 2.28
3 11.70 9.79
4 18.03 16.80 12.74

(c)

Class

1 2 3

Class 2 1.09
3 15.84 15.43
4 24.38 24.54 16.97

(d)

Class

1 2 3

Class 2 0.74
3 21.83 22.10
4 31.95 32.76 19.13

aAll four pairs of variables had unequal variances, and the critical t value is 2.58 (a50.01).
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other classes across all resolutions. This suggests that the topographic wetness index
is very sensitive to the resolution used to identify the ridgelines or hilltops where

flow accumulation starts, and the second hypothesis in section 3.1 can be rejected for

W. The different results presented for slope and W also indicate that the landscape

variation of resolution dependency varies from one terrain attribute to the next.

5. Conclusions

The research reported in this paper documents how scale dependencies in terrain

analysis vary across landscape types (i.e. classes). Interpretable landform classes

were defined in a reproducible way using an unsupervised landform clustering

procedure. Distinguishable responses for various landform classes were described

empirically using correlation and regression analyses and tested for significance

using t-tests. In this way, a formal description of the connection between landform
locations and variable scale dependencies of terrain attributes was provided for the

studied landscape. The manner in which grid resolution was resampled and the

Table 7. Two-tail t-tests for the W differences between landform classes using the 5-m and
four other resolutions: (a) 10 m, (b) 25 m, (c) 50 m, and (d) 100 ma.

(a)

Class

1 2 3

Class 2 0.09
3 9.14 9.12
4 0.81 0.88 5.95

(b)

Class

1 2 3

Class 2 0.77
3 11.94 13.19
4 0.23 0.40 9.43

(c)

Class

1 2 3

Class 2 1.43
3 15.94 17.85
4 1.76 0.55 14.70

(d)

Class

1 2 3

Class 2 1.84
3 18.66 21.14
4 3.25 1.73 18.23

aAll four pairs of variables had unequal variances, and the critical t value is 2.58 (a50.01).
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analysed grid points were held constant in location ensures that all statistical

summaries and empirical comparisons are based on the same spatial sample sets,

even though more than one sample set was used, and the results were combined.

This allowed point-to-point comparisons or correlations to be conducted between

attributes of various resolutions.

On the basis of this study, the following conclusions for this particular landscape

type were reached:

1. Terrain attributes respond to resolution change in characteristically different

ways, especially when the resolution is coarsened in the range of 5–50 m. Plan

and profile curvatures are the most sensitive among the tested attributes,

whereas slope is the least sensitive.

2. Consistently smaller correlations were observed across all terrain attributes

when the pairs of DEM resolution compared were increasingly distant from

each other.

3. Large differences were observed between 5 and 10 m W on all landform

classes, signifying that 10 m may be too coarse a resolution for W modelling,

at least for this landscape.

Further research is required to test W variation over a more continuous range of

fine resolutions beginning at 1 or 2 m, and in other landscapes. These findings are

based on the landscapes that are found in the Santa Monica Mountains, and care

should be taken when they are directly applied to other landscapes: further testing or

landscape comparisons are recommended.

Taken together, the experimental results presented in this paper provide

substantive evidence for scale-dependency issues in environmental modelling.

Such evidence is critical when we consider that environmental models developed

at a small scale (i.e. on points) are often extrapolated to larger areas over the

heterogeneous land surface (Band and Moore 1995), and input data composed of

multiple variables (e.g. slope and W for TOPMODEL) are often employed for the

same model or analysis. In the first instance, models should only be translated to

another scale when input data are translatable over various scales or resolutions.

Experiments as reported in this paper may assist us in developing reasonable

expectations regarding scale-induced variability of modelling results over landscapes

that are similar to the Santa Monica Mountains. In the second instance, it is

common that a uniform resolution is used for all variables. A better option may

exist to choose distinct resolutions for different variables because the scale-

dependency varies between these attributes, and multiple resolution combinations

may produce better results (Beven 1993, 1997). The diverse responses of different

terrain attributes to DEM resolutions and the obvious landscape dependency of

these responses indicate that our environmental analysis or modelling may display a

very complicated variability when input data resolutions are changed or when the

resolutions of variables are combined in different ways.
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