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This article examines how the methods and data sources used to generate DEMs and calculate land surface
parameters have changed over the past 25 years. The primary goal is to describe the state-of-the-art for a
typical digital terrainmodeling workflow that starts with data capture, continues with data preprocessing and
DEM generation, and concludes with the calculation of one or more primary and secondary land surface
parameters. The article first describes some of ways in which LiDAR and RADAR remote sensing technologies
have transformed the sources and methods for capturing elevation data. It next discusses the need for and
various methods that are currently used to preprocess DEMs along with some of the challenges that confront
those who tackle these tasks. The bulk of the article describes some of the subtleties involved in calculating
the primary land surface parameters that are derived directly from DEMs without additional inputs and the
two sets of secondary land surface parameters that are commonly used to model solar radiation and the
accompanying interactions between the land surface and the atmosphere on the one hand andwater flow and
related surface processes on the other. It concludes with a discussion of the various kinds of errors that are
embedded in DEMs, how these may be propagated and carried forward in calculating various land surface
parameters, and the consequences of this state-of-affairs for the modern terrain analyst.
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1. Introduction

The land surface plays a fundamental role in modulating the
atmospheric, geomorphic, hydrologic, andecological processesoperating
on or near the Earth's surface. This linkage is often so strong that an
understandingof the character of the land surface candirectly informour
understanding of the nature and magnitude of the aforementioned
processes (Hutchinson and Gallant, 2000). Applications that exploit this
knowledge usually rely on Digital ElevationModels (DEMs) to represent
the surface and a steadily increasing and sophisticated range of
techniques for topographic analysis and visualization (see Fig. 1 for a
typicalworkflow). These techniques anddata are increasingly referred to
as geomorphometry, which in its broadest sense, refers to the science of
digital terrain modeling [see Hengl and Reuter (2009), Li et al. (2005),
Wilson and Gallant (2000a), and Zhou et al. (2008) for examples of
recent books that exemplify this view].

Modern geomorphometry focuses on the extraction of measures
(land surface parameters) and spatial features (land surface objects)
from digital topography. This description relies on the specific and
general modes of geomorphometric analysis first distinguished by
Evans (1972). The specific mode describes discrete surface features
(i.e. landforms) and the general mode describes the continuous land
surface. Pike et al. (2009) have since updated these definitions such that
a land surface parameter is a descriptive measure of surface form
(e.g. slope, aspect, topographicwetness index) and a land surface object
is a discrete surface feature (e.g. watershed boundary, cirque, alluvial
fan, drainage network). While better, it is worth noting that this is a
somewhat arbitrary distinction and there are already examples of work
that show these two views are intimately linked to one another
(e.g. Gallant and Dowling, 2003; Deng and Wilson, 2008) and that
anticipating and representing these linkageswill grow in importance in
future applications.

Geomorphometry is simultaneously a rapidly evolving and yet
complicated field. This is in part due to technology — there are an
increasing number of digital remote sensing data sources and many
subtleties involved in creating DEMs from these as well as traditional
sources (e.g. Maune, 2001). The subtleties point to a series of key
questions – should unwanted depressions be removed?, should DEMs
be smoothed first, and if so, by what method?, what algorithms should
beused to propagateDEMerror andhowshould this uncertainty (error)
be handled through subsequent analyses?, among others – for which
there may not be clear and unambiguous answers. However, these
challenges can also be attributed to the steady growth in the number of
parameters and algorithms for processingDEMs and extracting both the
descriptive measures (parameters) and surface features (objects). The
values of these parameters and/or the characteristics of the objects will
vary depending on a variety of factors, including the mathematical
model by which they are calculated, the size of the search window, and
the grid resolution.

Notwithstanding these challenges, the computed land surface
parameters and landform objects have been adopted in a large number
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Fig. 1. The main tasks associated with digital terrain modeling.
From Hutchinson and Gallant, 2000, p. 30.
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and variety of applications and environmental settings— to predict the
distribution of soil properties (e.g. Zhu et al., 1997; Bishop andMinasny,
2005), model soil redistribution (i.e. erosion and deposition) processes
(e.g. Mitášová et al., 1995), assess the likelihood of slope hazards
(e.g. Guzzetti et al., 2005; Kheir et al., 2007), model solar radiation
potential (e.g. Šúri and Hofierka, 2004; Reuter et al., 2005), improve
vegetation mapping (e.g. Antonić et al., 2003; Bolstad and Lillesand,
1992), and analyze wildfire propagation (e.g. Hernández Encinas et al.,
2007), among others.

This article examines how the methods and data sources used to
generate DEMs and calculate land surface parameters have changed
over the past 25 years. The primary goal is to describe the state-of-
the-art for a typical digital terrain modeling workflow that starts with
data capture, continues with data preprocessing and DEM generation,
and concludes with the calculation of one or more primary and
secondary land surface parameters. Band (2011—this issue), Bishop
(2011—this issue), Evans (2011—this issue), Mitášová et al. (2011—
this issue) and Pelletier (2011—this issue) describe the changing role
and significance of these land surface parameters in landform
classification and a variety of environmental modeling applications.

The remainder of the article is organized as follows. The next section
describeshowthe sources andmethods for capturing elevationdatahave
evolved rapidlyduring thepast twodecades. Section3describes theneed
for and methods used to preprocess DEMs along with some of the
challenges that confront thosewho tackle these tasks. Section4describes
the primary land surface parameters that are derived directly fromDEMs
without additional inputs and the two sets of secondary land surface
parameters that are commonly used to model solar radiation and the
accompanying interactions between the land surface and the atmo-
sphere on the one hand andwater flow and related surface processes on
the other. Section 5 discusses the various kinds of errors that are
embedded in DEMs and how these may be propagated and carried
forwardwith the calculation of various landsurface parameters. Thefinal
section offers some concluding remarks and ideas for future work.

2. Data capture

Thegeneration ofDEMs incorporates three interrelated tasks: (1) the
sampling of the land surface (i.e. the gathering of height measure-
ments); (2) creating a surface model from the sampled heights; and
(3) correctingerrors andartifacts in the surfacemodel (Hengl andEvans,
2009). We take up the first two tasks below and leave the third to the
following section because we aremore often than not interested in how
these errors and artifacts influence our analysis rather than elevation
per se.

The most common data form is the square-grid DEM, a gridded set
of points in Cartesian space attributed with elevation values that
describe the Earth's ground surface (see Fig. 5 for an example of this
grid structure). However, as Hengl and Evans (2009) have observed,
the way we conceptualize the surface is becoming more and more
important. There are not only the problems that arise because of the
loss of many locally significant terrain features (i.e. ridgelines, stream
bottoms) and the scale dependency of many of the descriptors we use
to describe the topographic surface when we are limited to coarse
DEMs [see Kienzle (2004), Raaflaub and Collins (2006) and Zhang and
Montgomery (1994) for descriptions of these kinds of problems], but
there is also a need for better algorithms to filter out vegetation,
buildings, and other man-made structures in the new and more
accurate DEMs that can be generated from remote sensing systems
(i.e. LiDAR), and what exactly constitutes the surface then becomes
more problematic. Indeed, this same ambiguity is true of stream
channels given that the initiation of and paths followed by these
features may vary from storm to storm in upland areas (Montgomery
and Dietrich, 1989, 1992; Sheng et al., 2007). Finally, the generation of
“bare earth” DEMs that is often held up as the preferred result would
seem less than optimal for a number of applications, such as non-
point source pollutant applications that seek to trace pollutants from
their sources to the ocean across large metropolitan regions (Fig. 2).

The data sources and processing methods for generating DEMs
have also evolved rapidly over the past 20–30 years — from ground
surveying and topographic map conversion to passive methods of
remote sensing and more recently to active sensing with LiDAR and
RADAR. Nelson et al. (2009) distinguished three general classes of
DEM data – those collected from: (1) ground survey techniques
(including electronic theodolites, total stations, Electronic Distance
Measuring (EDM) and Global Positioning System (GPS) units);
(2) existing topographic maps (derivation of contours, streams, lakes
and spot heights from existing hardcopy topographic maps); and
(3) remote sensing (both airborne and satellite photogrammetric/
stereo methods, airborne laser systems, and both airborne and satellite
radar using interferometry) – and offered a succinct summary of the
major features of each of these options (Table 1).

The rapid growth in sources of mass-produced DEMs during the
past two decades, such as the Shuttle Radar Topographic Mission
(SRTM) and laser ranging (LiDAR) surveys, has seen DEM resolution
improve considerably although the current state-of-the-art and range
of applications that can be supported are more often than not a
function of the geographic extent of the area of coverage or interest.

Hence, reliance on LiDAR surveys has grown quickly and this
source now dominates local and regional projects everywhere.
Belgium and the Netherlands, for example, have already produced
national LiDAR digital surface models (DSMs) at resolutions of 2–5 m
and much finer resolution DEMs have been produced for many
smaller areas as well (Nelson et al., 2009). The advantages of using
LiDAR include the high density of sampling, high vertical accuracy,
and the opportunity to derive a set of surface models given that some
laser scanning systems can already provide at least two versions of the
surface: the vegetation canopy (first returns) and ground surface (last
returns), which should help with the modeling of water budgets in
heavily vegetated areas (forests) and in built environments (i.e. urban
areas). However, the small footprint and measurement challenges
encountered in areas with tall buildings, dense vegetation canopies
and water surfaces make this a relatively expensive option and
numerous studies have documented how the accuracy of LiDAR
elevation data varies with both the sensor system that was used



Fig. 2. Schematic showing the complexity of the “land” surface in urban landscapes.
From Division of Information Technology, Engineering and the Environment, Barbara Hardy Centre for Sustainable Urban Environments, University of South Australia website;
http://www.unisa.edu.au/barbarahardy/research/3D.asp.
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(Dowman, 2004) and the land cover and other characteristics of the
land surface (Hodgson et al., 2005).

Very impressive gains have beenmade at the continental and global
scales (extents). Hence, the3 arc-secondSRTMDEMthatwasdeveloped
from satellite data collected over a nine-day window in 2000 covers a
large fraction of the globe (from60°N to 58° S) andhas already emerged
as one of the most consistent, complete and popular environmental
datasets in theworld (Nelson et al., 2009; Zandbergen, 2008). The three
arc-second(~90 m)grid spacing ismuchbetter than the1 kmspacingof
the worldwide GTOPO30 DEM and an accuracy assessment using
Table 1
Key characteristics of data sources.
Modified from Nelson et al., 2009, p. 83–84.

Source Resolution (m) Accuracy

Ground survey Variable but usually b5 m Very high vertical and horizonta
GPS Variable but usually b5 m Medium vertical and horizontal
Table digitizing Depends on map scale and

contour interval
Medium vertical and horizontal

On-screen digitizing Depends on map scale and
contour interval

Medium vertical and horizontal

Scanned topo-map Depends on map scale and
contour interval

Medium vertical and horizontal

Ortho-photography b1 Very high vertical and horizonta
LiDAR 1–3 0.15–1 m vertical, 1 m horizonta
InSAR/IfSAR 2.5–5 1–2 m vertical, 2.5–10 m horizon
SRTM, Band C 90 (30) 16 m vertical, 20 m horizontal
SRTM, Band X 30 16 m vertical, 6 m horizontal

ASTER 30 7–50 m vertical, 7–50 m horizon
SPOT 30 10 m vertical, 15 m horizontal
kinematic global positioning systems (GPS) data showed good absolute
height accuracy, with 90% of the errors b5 m (Rodriguez et al., 2006).
This productmust nevertheless be used carefully because: (1) it shows a
DSM (not a bare-earth model); (2) surface characteristics may affect
accuracy; (3) voids often occur at the land-watermargins; (4) problems
may occur in desert and mountain areas due to foreshadowing and
shadowing effects (Rodriguez et al., 2005); and (5) the current 90 m
resolution provided by the global SRTM DEM is not fine enough for the
mapping of soils, vegetation and similar phenomena (Gessler et al.,
2009). Last but not least, a series of recent studies has shown a positive
Footprint (km2) Post-processing
requirements

Elevation/surface

l Variable, but usually small Low Elevation
Variable, but usually small Low Elevation
Depends on map footprint Medium Elevation

Depends on map footprint Medium Elevation

Depends on map footprint High Elevation

l – High Surface
l 30–50/h High Surface
tal Depends on method of acquisition High Surface

Almost global, 60° N to 58° S Potentially high Surface
Similar to B and C, but only every
second path is available

Potentially high Surface

tal 3600 Medium Surface
72,000 per swath Medium Surface

image of Fig.�2
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relationship between elevation error and height of the canopy (e.g.
Carabajal andHarding, 2006;Hoftonet al., 2006; Shortridge, 2006; Berry
et al., 2007; Bhang et al., 2007) and one in particular, indicating how
low-lying, riparian areas may be represented as substantially higher
than the surrounding agricultural areas (leading to an inverted terrain
model; LaLonde et al., 2010), highlights the need to assessfitness for use
before deploying one ormore of these datasets for a specific application
or study area. The presence of and propagation of error is taken up again
in more detail in Section 5.

Some, but not all of the aforementioned problems, may be addressed
by the Advanced Spaceborne Thermal Emission and Reflectance
Radiometer Global Digital Elevation Model (ASTER G-DEM) that was
released in 2009. This new product offers better resolution (one vs. three
arc-seconds) andbetter spatial coverage (83°N to83° Svs. 60°N to58° S)
aswell as comparable vertical andhorizontal accuracy (7–20 mvertically
and 30 m horizontally compared to 16 m and 20 m, respectively for
SRTM) (Hiranoa et al., 2003; Nelson et al., 2009; Slater et al., 2009). In
addition, themissing data problems caused by cloudswill be easier to fill
because of the open-ended acquisition schedule but the 30 m resolution
will of course still not be sufficient to support the mapping of soils,
vegetation and similar phenomena inmost landscapes. The releaseof this
product is so recent that there are few published reports documenting
the strengths and weaknesses of this new data source for specific
locations and/or applications.

Whatever the data source that is chosen, this is usually just the first
step because some preprocessing will usually be required no matter
what the source or intended application. These tasks and some of the
challenges and issues that accompany them are taken up in the next
section.

3. Data preprocessing and DEM construction

The preparation of elevation data for geomorphometric analysis is
tricky because elevation, per se, is typically not the attribute of interest
and this means that the true geomorphological accuracy can only be
assessed bymeasuring surface parameters and objects such as drainage
lines, landforms or viewsheds in the field and then comparing their
shapes, distributions, and location with the values obtained by
geomorphometric analysis (e.g. Fisher, 1998; Wilson et al., 2008).
Reuter et al. (2009, p. 90) suggested that the true applicability of DEMs
for geomorphometric analysis can only be assessed by providing
answers to the following questions: (1) how accurately is the surface
roughness represented?, (2) how accurately is the shape of the land
surface represented (i.e. concave and convex shapes, erosion and
deposition, water convergence or divergence but see Hutchinson and
Gallant (2000) for additional ways to evaluate this component of data
quality)?, (3) how accurately are the “real” world ridgelines and
streamlines detected?, and (4) how consistently are elevations
measured over the whole area of interest? The answers to these and
similar questions are interrelated, and therewill almost certainly still be
errors present in the available and/or preferred DEM(s) notwithstand-
ing the answers to these important questions. The frequency and
magnitude of errors will depend on the technologies andmethods used
to collect the source data, the preprocessing algorithms that are applied,
and the characteristics of the land surface itself.

Not surprisingly, the horizontal and vertical resolution of the
elevation data used to portray a terrain surface will have a significant
influence on the level of detail and the accuracy of the portrayal of
surface features and on the values of the land-surface parameters that
are computed from a DEM (MacMillan and Shary, 2009). Numerous
authors have documented the effects of grid spacing on the value and
accuracy of land surface parameters and landform objects (e.g. Zhang
and Montgomery, 1994; Florinsky, 1998; Jones, 1998; Wilson et al.,
2000; Thompson et al., 2001; Shary et al., 2002; Tang et al., 2002;
Kienzle, 2004; Warren et al., 2004; Zhou and Liu, 2004; Hengl, 2006;
Raaflaub and Collins, 2006). However, the increasing interest in
various forms of multi-scale analysis [see Gallant and Dowling (2003)
and Sulebak and Hjelle (2003) for two recent examples] and the
enduring need to be able to move seamlessly across scales mean that
more work is needed on these scale relationships and effects.

Beyond these kinds of relationships and the ensuing impacts, the
decisions made about unwanted depressions (i.e. spurious pits or
sinks) will have a large impact on the subsequent analysis and
interpretation of the results of geomorphometric analysis. Two
approaches have found frequent use — one relies on progressively
filling the sinks by increasing their elevation values until the elevation
of their lowest outflow point is reached (e.g. Jenson and Domingue,
1988; Martz and de Jong, 1988; Soille and Gratin, 1994; Planchon and
Darboux, 2001; Wang and Liu, 2006), whereas the second method
creates a descending path from the bottom of the sink by carving the
terrain along this path until the nearest point is reached which has an
elevation lower than the bottom of the sink (e.g. Morris and
Heerdegen, 1988; Rieger, 1992; Martz and Garbrecht, 1999; Soille
et al., 2003; Soille, 2004). However, Reuter et al. (2009) recently used
both of these approaches along with one that combined sink filling
and carving such that the sum of the differences in elevation between
the input DEMs and the output DEMs that did not have sinks were
minimized. This combined approach produced superior results for the
Baranja Hill study catchment in Croatia [see Grimaldi et al. (2007)
for an alternative physically-based approach]. Lindsay and Creed
(2005a,b, 2006) have also combined elements of the aforementioned
approaches and used them to distinguish artifact and real depressions
in digital elevation data and to propose a minimum impact approach
for removing the artifact depressions in relatively flat landscapes like
those occurring on the Canadian Shield.

There are at least two other related challenges that may need to be
addressed as well. The first concerns the problem of unresolved flow
directions on flat terrain because the assignment of flow directions
relies on the presence of elevation differences between adjacent cells
to drive the flow. The presence of lakes and reservoirs and reliance on
the first of the aforementioned approaches for filling sinks may
exacerbate this challenge by creating artificial flat regions as well.
Whatever the cause, one of two approaches is typically used to
remove or minimize these kinds of problems. The first relies on an
iterative procedure to assign a single flow direction to a neighboring
cell without alteration of the elevation values (Jenson and Domingue,
1988), whereas the second method makes small alterations to the
elevation of the flat cell(s) in order to create a small artificial gradient
(Garbrecht and Martz, 1997). The solutions obtained with these
approaches will vary slightly from one another and an intimate
knowledge of the field conditions will usually be required to know
whether one approach produces superior results in most landscape
settings.

The second challenge is the need to reconcile the DEM and drainage
lines acquired from some other source (dataset) (Lindsay et al., 2008).
One approach relies on stream “burning”where the local topography is
altered to provide consistency with some existing vector hydrography
dataset (Saunders andMaidment, 1996) and the secondmethod utilizes
the stream network as a part of the surface fitting approach used to
generate square-gridDEMs (Hutchinson, 1989).Wehaveused the latter
almost exclusively in our ownwork, in part because the latter approach
is embedded in a modeling environment (ANUDEM or the Topo to
Raster tool in ArcGIS 10.x) that tackles the last three problems (i.e.
unwanted depressions, unresolved flow directions in flat terrain, and
reconciliation of elevation and hydrography datasets) simultaneously.

ANUDEM (Hutchinson, 1988, 1989, 1996) can work with contours
and spot heights and uses an iterative finite difference interpolation
technique to build one or more square-grid DEMs. The four diagrams
reproduced in Fig. 3 and accompanying text in Hutchinson (2008)
provide a concise summary of the results that can be expected when
using this approach. The method basically starts with a coarse grid,
enforces the drainage conditions (using one or more depictions of



Fig. 3. Key steps and outputs of using the ANUDEM direct griddingmethods of Hutchinson (1988, 1989, 1996). The four maps show: (a) contour, point elevation and streamline data;
(b) minimum curvature gridding of point elevation data with spurious sinks or depressions; (c) spurious sinks removed from the surface in (b) by the drainage enforcement
algorithm; and (d) contour, stream and ridge lines derived by the ANUDEM procedure from the topographic data shown in (a).
From Hutchinson, 2008, p. 148, 153–155.
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stream lines), increases the spatial resolution, enforces the drainage
conditions again, and so on, until the desired resolution is reached. It is a
very popular technique because it produces a hydrologically-correct
land surface model (i.e. one in which the ridges are retained, streams
enforced, and spurious sinks removed) although like all interpolators,
this approachmay not produce optimal results if poor input parameters
are selected (Wise, 2000) That said, the choice of the preferred
interpolation technique may depend in part on the source of the data
(precise height measurements might lead one to choose an exact
interpolator whereas noisy data would direct our attention to an
approximate interpolation technique) and the characteristics of the
application [see Pain (2005) for an extended discussion of these issues].

The rapid growth in sources of mass-produced, remotely sensed
DEMs during the past two decades has demanded new forms of DEM
preprocessing. Reuter et al. (2009) and Webster and Dias (2006), for
example, describe various approaches and opportunities for ortho-
rectifying DEMs, reducing local outliers and noise, filtering water
surfaces, filtering pure noise, filtering forests in SRTM DEMs, reducing
padi terraces (i.e. areas with closed contours where all the surrounding
pixels show the samevalue),fillingvoids and sinks,mosaickingadjacent
DEMs, andfiltering LiDARDEMs. Someproblems aremore difficult tofix
than others and numerous authors have noted the presence of
systematic and random errors that are not so easy to detect and correct
in LiDAR datasets for example (Filin, 2003; Katzenbeisser, 2003). The
detection of distance errors, of varying deflection errors and of time
delays between measurements is especially difficult and specific to the
composition of the LiDAR sensor system and the large number of
parameters that were assigned when the individual sensor systems
were manufactured (Dowman, 2004).

Reuter et al. (2009) also noted two additional trends that have
emerged in recent years. The first is the integration of topographic and
auxiliary information (such that the location of lakes, streams, ridges,
and/or breaks will be identified from satellites and incorporated in the
DEM processing chain similar to what happens with ANUDEM) and
the second is the increased use of fully data-driven simulation
methods that reduce some or all of the aforementioned errors by
calculating the average value of the land surface parameter from
multiple equi-probable realizations of the DEM (e.g. Burrough et al.,
2000; Hengl et al., 2004; Raaflaub and Collins, 2006).

4. Calculation of land surface parameters

The typical digital modeling workflow, once there is a suitable DEM
at hand, will focus on either the extraction of measures (land surface
parameters) and/or spatial features (land surface objects). Two classes
of land surface parameters – primary and secondary – are usually
distinguished and the same distinction is used in the discussion that
follows here. The use of land surface parameters to identify landform
classes and features (i.e. objects) can be traced to the pioneeringwork of
Speight (1968) and Dikau (1989) and recent developments include the
use of automated fuzzy classification algorithms to detect landform
facets (e.g. Burrough et al., 2000; Schmidt and Hewitt, 2004). These

image of Fig.�3


Table 2
List of primary and secondary land surface parameters and their significance.
Modified from Wilson and Gallant, 2000b, p. 7 and Olaya, 2009, p. 142.

Parameters Type Significance

Elevation Local Climate, vegetation, potential energy
Slope Local Precipitation, overland and subsurface flow

velocity and runoff rate, soil water content
Aspect Local Flow direction, solar insolation,

evapotranspiration, flora and fauna
distribution and abundance

Profile curvature Local Flow acceleration and deceleration, soil
erosion and deposition rates

Tangential curvature Local Local flow convergence and divergence
Roughness Local Terrain complexity
Elevation percentile Local Relative landscape position, flora and fauna

distribution and abundance
Flow width Local Flow velocity, runoff rate, and sediment load
Upslope contributing
area

Regional Runoff volume, soil water content, soil
redistribution

Flow-path length Regional Runoff volume, soil water content, soil
redistribution

Upslope height, elevation-
relief ratio, hypsometric
curve, etc.

Regional Distribution of height values, potential
energy, flow characteristics

Mean slope of upslope
area

Regional Runoff velocity and possibly other flow
characteristics

Mean slope of dispersal
area

Regional Rate of soil drainage

Visual exposure Regional Exposure, solar insolation, wind patterns
Topographic wetness
index

Regional Spatial distributions and extent of zones of
saturation (i.e. variable source areas) for
runoff generation as a function of upslope
contributing area, soil transmissivity, and
slope

Stream power index Regional Erosive power of flowing water (based on the
assumption that discharge is proportional to
the specific catchment area)

112 J.P. Wilson / Geomorphology 137 (2012) 107–121
applications will not be discussed further given that they rely on
increasingly sophisticated methods and the land surface parameters
described inmore detail below constitute basic building blocks for these
and other forms of more sophisticated analysis.

4.1. Primary land surface parameters

The primary land surface parameters are derived directly from the
DEMs without additional inputs. A variety of terms have been used to
describe these parameters. Olaya (2009), for example, referred to
them as ‘basic’ land surface parameters and noted that they can be
calculated from the DEM without further knowledge of the area
represented. He then distinguished local and regional parameters
because the latter consider additional parts of the DEM apart from the
exact area for which parameters are to be calculated. Florinsky (1998)
also distinguished local primary attributes that are calculated as a
function of their surroundings and non-local primary attributes that
require the analysis of a larger, non-local land surface area from a
computational perspective. Wilson and Burrough (1999) later
explained the distinction between local vs. non-local terrain attributes
in terms of the existence of local interactions between neighboring
points and “action-at-a-distance” forces (see Fig. 4 for details). Typical
examples of local primary land surface parameters (i.e. attributes)
include slope, aspect, and plan and profile curvatures; non-local
primary land surface parameters include flow path length, proximity
to nearest ridgeline, dispersal area, and upslope contributing area.
Table 2 lists the most frequently used primary and secondary land
surface parameters and their significance.

Most local parameters are calculated by moving a three-by-three
window across a grid and calculating land surface parameters for the
target cell (i.e. the central cell in the three-by-three window) (Fig. 5).
There are special rules for how to handle the edges and this approach
produces a new grid with the same dimensions as the DEM for each
parameter. A variety of equations have been proposed to calculate slope
andaspect (i.e. thefirst derivatives) andcurvatures (secondderivatives)–
see Evans (1972), Florinsky (1998), Moore et al. (1993a), Pennock et al.
(1987), Shary et al. (2002) and Zevenbergen and Thorne (1987) forwell-
known examples – and each is likely to produce slightly different
estimates across a range of land surface conditions (flat, undulating, steep
terrain, etc.). The interested reader will find more details about the
performance of these equations inHengl and Evans (2009) and Skidmore
(1989).

The calculation and interpretation of the slope and aspect grids is
reasonably straightforward (see Fig. 6 for an example of a slope grid).
Fig. 4. Schematic showing site-specific, local and
From Wilson and Burrough, 1999, p. 739.
The profile (or vertical) curvature and tangential (horizontal) curvature
are often used to distinguish locally convex and concave shapes (see
Fig. 7 for an example of a profile curvature grid). The convention
followed in the earth sciences is towrite the sign of curvature as positive
for a convex surface shape and negative for a concave surface shape
(Olaya, 2009, p. 150). That said, concave tangential curvature indicates
convergence and convex tangential curvature indicates divergence of
flow lines (which may in turn influence overland flow paths, soil
moisture distribution, soil redistribution, etc.). Convex profile curvature
indicates acceleration of flows and a local increase in potential energy
regional interactions as a function of time.

image of Fig.�4


Fig. 5. Local parameters are usually calculated by moving a 3×3 grid across the DEM.
From Olaya, 2009, p. 143.

Fig. 7. Profile curvature (radians per 100 m, convex curvatures are positive) grid for the
Cottonwood Creek, Montana DEM, with the catchment boundary overlaid.
From Gallant and Wilson, 2000, p. 59.
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whereas concave profile curvature indicates aflatteningof the slope and
therefore a decline in potential energy (e.g. Fig. 7). Plan curvature is
sometimes used to describe the curvature of contour lines and should
yield similar results to tangential curvature so long as the contour lines
describe the shape of the land surface (Gallant andWilson, 2000). Olaya
(2009) describes several other curvatures and their potential signifi-
cance in the earth sciences.

Olaya (2009, pp. 157–163) also described a number of what he
called statistical parameters which shares some similarities with the
list of elevation residuals proposed by Gallant and Wilson (2000,
p. 73–76).We prefer the latter list – it is shorter and the significance of
each of the elevation residuals seems straightforward – although just
one of these parameters (terrain roughness) has found widespread
use (for characterizing wind directions, exposures, etc.). This
parameter is usually taken to be the standard deviation or coefficient
of variation of elevation in some circular window and is therefore a
useful measure of the local relief or roughness of the landscape at the
scale specified by the radius of the window (so long as the elevation
Fig. 6. Percent slope grid derived from the Cottonwood Creek, Montana DEM using the
finite difference formula, with the catchment boundary overlaid.
From Gallant and Wilson, 2000, p. 54.
differences with respect to the regression plane are accounted for in
mountainous terrain and continental scale applications).

One possible reason for the slow uptake of many of this last group
of land surface parameters is that their biophysical meaning is not
clear. This problem may be exacerbated by the multi-collinearity of
numerous pairs of attributes. There are now 30 or more primary land
surface parameters and they are mostly empirical in nature and as
such, are based on perhaps two fundamental parameters. This state of
affairs means that two or more parameters may yield the same
information (the classic example is relief and slope) and they should
therefore be used and interpreted carefully. The use of primary and
secondary land surface parameters with fuzzy k-means classification
to delineate landform classes, for example, should start with
correlation analysis to confirm that the candidate inputs are not
highly correlated with one another [see Burrough et al. (2000), Deng
et al. (2006, 2007), Deng (2007), and Deng and Wilson (2006, 2008)
for examples of good practice].

The regional (i.e. non-local) land surface parameters are mainly
concerned with the climatic, geomorphic, hydrological or visual
properties of landscapes. The first category relies on the accurate
delineation of the shadowing, sky view and reflective character of the
surrounding terrain (as will be discussed in more detail in the next
section). The geomorphic and hydrological parameters focus on the
movement of water and sediment and as such, rely on the accurate
delineation of watersheds (and by extension, the availability of DEMs
that include these features). The most common parameters are
upslope contributing area, flow path length and a variety of statistical
measures summarizing the elevation and slope values upslope and
downslope of each grid cell (see Table 2 for additional details). The
subtleties of calculating the flow direction grid from which many of
these parameters are derived and the importance of considering
climate and soil parameters along with the shape of the land surface
itself are taken up in more detail in the next section as well. For the
final category, we can calculate the visibility (i.e. from what other
points can a single point be seen or the reverse, what other points can
we see from a single point) by drawing the line of sight from the point
of interest to all other points and checkwhether or not the relief forms
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that occur between them block visibility. From here we can calculate
various measures of visual exposure, such as the number of cells that
can be seen from each cell [see Fisher (1991, 1992, 1993, 1995, 1996)
and Ruiz (1997) for examples of these types of applications and some
of the pitfalls that must be avoided].

Last but not least, we need to take up the issue of scale in the
context of these primary land surface parameters. The local terrain
shape, which is usually thought of as the continuous variation of
elevation values over the terrain surface from point to point, has an
enormous impact on local and regional terrain attributes, but this role
is influenced by data and computational factors as well. Florinsky
(1998) suggested that local attributes, such as slope gradient, aspect,
and curvatures, are mathematical variables rather than real world
values. This statement may be extended to all local terrain attributes
for two reasons. First, local terrain shape may rely on different
mathematical descriptions, so that calculated local attributes depend
on algorithm selection. Second, the terrain shape portrayed by DEMs
is a function of scale, combining the complexity of the terrain, scale or
resolution of data, and spatial scale at which the terrain surface is
observed (e.g. Deng et al., 2008). Thus it is possible to use the same
local attribute to describe terrain shape at different scales (resolu-
tions). The special feature of non-local primary attributes is that they
rely on the terrain shape of a larger, non-neighbor area and need to be
defined with reference to other non-local points. Therefore, calculat-
ing non-local attributes is more difficult because it incurs additional
efforts in constructing point-to-point connections over the landscape
and involves more complex algorithms and scale considerations (e.g.
Desmet and Govers, 1996; Gallant and Wilson, 2000).

4.2. Secondary land surface parameters

There are two basic sets of secondary land surface parameters. The
first is the hydrologic land-surface parameters for quantifying water
flow and related surface processes and the second is a series of solar
radiationmodels andmethods for quantifying the interactions between
the land surface and the atmosphere. The underlying theory for both is
well established (see Moore et al. (1991) for a review of both the basic
principles and some early applications), and the computational
methods have evolved continuously over the past 20 years along with
the resolution and quality of the underlying digital elevation models.

The movement of water is primarily driven by gravity and to some
degree modified by the properties of the material it flows through or
over (Gruber and Peckham, 2009). The effect of gravity can be
approximatedwell andeasilywithaDEMbut the surface and subsurface
properties and conditions are cumbersome to describe and treat. There
are steadily improving regional and national databases describing the
spatial variability of selected land surface and soil characteristics (e.g.
Miller andWhite, 1998), but these have a much coarser resolution than
our DEMs and seldom include the various properties needed for specific
applications. The typical approach relies on a series of parameter
estimation equations (e.g. Rawls, 1983; Saxton et al., 1986; Abdulla and
Lettenmier, 1997;Homannet al., 1998;Waltmanet al., 2003; Saxtonand
Rawls, 2006), although thesewill introduce someadditional uncertainty
and error to the analytical workflow or modeling application at hand
(e.g. Band, 1993;Wilson et al., 1996; ZhuandMackay, 2001;Quinnet al.,
2005). Given this state of affairs, we can assume that the DEM-based
parameters will do better where the relative importance of gravity is
greatest (i.e. in headwater areas and on steep slopes).

The initial development and use of flow-based land-surface
parameters can be traced to the introduction of the D8 algorithm
(O'Callaghan and Mark, 1984). However, this is now but one or more
than a dozen flow routing algorithms and a distinction is usually drawn
between single- and multiple-flow direction algorithms (Fig. 8). The
single flow routing algorithms, which direct flow to just one downslope
or neighboring cell, include the Rho8 (Fairfield and Leymarie, 1991) and
aspect-driven kinematic routing (Lea, 1992) algorithms in addition to
the D8 algorithm. The multiple flow routing algorithms, which are
capable of directingflow to twoormoredownslopeor neighboring cells,
include the FD8 (Freeman, 1991), TOPMODEL (Quinn et al., 1991, 1995),
DEMON (Costa-Cabral and Burges, 1994), D∞ (Tarboton, 1997), and
Mass-Flux algorithms (Gruber and Peckham, 2009). These flow routing
algorithms will usually generate very different results (see Figs. 9
and 10 for examples of upslope contributing area grids generated with
the D8 and DEMON flow routing algorithms). The performance of these
flow routing algorithms has been compared across a variety of
landscapes (e.g. Wolock and McCabe, 1995; Desmet and Govers,
1996; Wilson et al., 2000; Chirico et al., 2005; Zhou and Liu, 2002;
Endreny andWood, 2003; Wilson et al., 2007) andWilson et al. (2008)
recently evaluated theperformance of nine suchalgorithms–ANSWERS
(Beasley and Huggins, 1978), D8 (O'Callaghan and Mark, 1984), Rho8
(Fairfield and Leymarie, 1991), FD8/TOPMODEL (Freeman, 1991; Quinn
et al., 1991, 1995), Lea's aspect-driven kinematic routing algorithm(Lea,
1992), DEMON (Costa-Cabral and Burges, 1994), the flow decomposi-
tion algorithm of Desmet and Govers (1996), D∞ (Tarboton, 1997), and
MFD-md (Qin et al., 2007) – and showed how the various algorithms
can be expected to generate different patterns offlow(based onupslope
contributing areas) on different parts of a hillslope or watershed.

It is also clear that the multiple flow routing algorithms have grown
in popularity over time. The fundamental goal with this class of
algorithms is to find amethod or sequence of methods thatmovewater
into oneormore downslope cells, andGruber andPeckham(2009) have
noted how this approachmight be justified by actual divergence (i.e. the
need to treat flows across convergent and divergent land surfaces) and/
or the attempt to overcome the limits of having only eight adjacent cells
(i.e. methods to overcome limitations generated when we represent a
continuous flow field with a regular grid that only has eight possible
directions in multiples of 45°).

This pair of explanationshelps to explainwhy thefinal choice offlow
routing method for a specific application will be a compromise. The
singleflowdirection algorithms cannot represent divergentflowbut for
the same reason have no problemwith over-dispersal (i.e. the dispersal
of the available flow over toomany cells or too large an area); however,
themultiple flow direction algorithms can represent divergent flow but
usually also suffer from some over-dispersal. The subtleties and
outcomes of the methods concerned with the need to: (1) treat
ambiguous flow directions (as for example occurs along ridgelines or
saddles and across flat plains or valley bottoms); and (2) reconcile the
DEM-delineated flow lines and the drainage lines acquired from some
other source are also likely to influence the results generatedwith these
different flow routing algorithms.

That said, the flow directions are usually computed so we can
calculate upslope contributing areas (i.e. flow accumulation areas) and
delineate the drainage networks [see Band (1986, 1989, 1991),
Montgomery and Dietrich (1989, 1992) and Peckham (1998) for
examples of methods for delineating drainage networks with single
flow direction algorithms] along with the basin boundaries and a series
of both basin and channel attributes. The topographic wetness and
stream power indices are among the most popular of these attributes
and unlike the catchment (basin) boundaries and someother attributes,
this pair of attributes can be calculatedwith both the single andmultiple
flow direction algorithms.

The typical form of the topographic wetness index assumes steady-
state conditions and describes the spatial distribution and extent of
zones of saturation (i.e. variable source areas for runoff generation) as a
function of upslope contributing area, slope and occasionally soil
transmissivity (this last term is oftenomittedbecause the transmissivity
is assumed to be constant throughout the catchment). The steady state
form of the topographic wetness index predicts zones of saturation
where the specific catchment area is large (which typically occurs in
converging areas of the landscape), the slope is small (which typically
occurs at the base of concave slopes), and soil transmissivity is low
(which is often characteristic of areaswith shallow soils). This index has



Fig. 8. Single flow direction assigned to the central pixel in a 3×3 neighborhood using D8 (a) and multiple flow directions assigned to the central pixel in a 3×3 neighborhood using
MDF (b). Multiple flow directions are assigned and a fraction of the mass of the central cell is distributed to each of the three lower cells that the arrows point to in (b). All mass
fractions together must sum to one in order to conserve mass in (b) as well. Gray values represent elevation increasing with darkness of the cell in both instances.
From Gruber and Peckham, 2009, pp. 176–177.
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been used successfully in a variety of hydrological applications because
the aforementioned conditions are frequently encountered along
drainage paths and in zones of water concentration inmany landscapes
(e.g. Beven and Kirkby, 1979; Burt and Butcher, 1985;Moore and Burch,
1986; O'Loughlin, 1986; Sivapalan et al., 1987; Moore et al., 1988;
Phillips, 1990; Moore and Wilson, 1992; Montgomery and Dietrich,
1994; Moore and Wilson, 1994; Kheir et al., 2007).

However, these types of static indices must be used carefully to
predict the distribution of dynamic phenomena like soil water content
because surface saturation is a threshold process, the presence of hysteric
effects, and the reliance on one or more assumptions. The two most
important assumptions in this case are that: (1) the gradient of the
Fig. 9. Contributing area (ha) grid derived from the Cottonwood Creek, Montana DEM
using the D8 single flow direction algorithm, with the catchment boundary overlaid.
From Wilson and Gallant, 2000c, p. 62.
piezometric head, which dictates the direction of subsurface flow, is
assumed to be parallel to the land surface; and (2) there is sufficient time
between rainstorms for the subsurface flow to achieve a steady state
(Moore et al., 1993a). Numerous authors have described the pitfalls of
using thesekindsof indices in inappropriateways. Jones (1986, 1987), for
example, documented some of the advantages and limitations of using
wetness indices to describe spatial patterns of soil water content and
drainage, and Quinn et al. (1995) summarized the various problems and
described how the steady-state topographic wetness index can be
calculated and used effectively as part of the TOPMODEL hydrologic
modeling framework. Numerous variants of the original equation have
also been proposed. Barling (1992), for example, proposed a quasi-
Fig. 10. Contributing area (ha) grid derived from the Cottonwood Creek, Montana DEM
using the DEM stream tube algorithm, with the catchment boundary overlaid.
From Wilson and Gallant, 2000c, p. 67.
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dynamic topographic wetness index (QD-TWI) to overcome the
limitations of the steady-state assumption and used it to show how the
topographic hollows and not the drainage channels themselves
determined the response of a semi-arid catchment in New South
Wales, Australia [see Barling et al. (1994) for additional details], and
Wood et al. (1997) later proposed an alternative index to predict the
saturated zone thickness that incorporated both spatial and temporal
variation in recharge. Nguyen and Wilson (2010) calculated QD-TWI
using a variety of flow routing algorithms (the D8 single flow direction
flow routing algorithmwas used in the original work) and showed how
the results varied depending on the flow routing algorithm that was
utilized.

Turning next to the radiation transfer functions, Böhner and Antonić
(2009) offer an especially broad and eclectic summary of the land
surface parameters that rely on the assertion that the shape and
character of the land surface controls the spatial variability of near-
ground atmospheric processes and associated climatic variations. We
will ignore the regionalization approaches that employ kriging,
universal kriging and splines to map the climate variables measured
at climate stations [see Daly et al. (2002), Hutchinson (1995, 2008),
Jarvis and Stuart (2001), Lloyd (2005), Thornton and Running (1999),
Thornton et al. (1997, 2000) for examples of approaches that can
generate satisfactory results given a regular distribution of input data
and proper representation of topo-climatic settings] and instead focus
on the land surface parameters that have been proposed and used to
assess the variability of the short- and long-wave radiation fluxes across
the land surface.

The best methods for calculating these parameters will account for
the three major causes of spatial variability of radiation at the land
surface: (1) the orientation of the Earth relative to the sun; (2) the
presence of clouds and other atmospheric effects; and (3) the
topographic effects. The SRAD model, for example, calculates potential
solar radiation as a function of latitude, slope, aspect, topographic
shading and time of year, and then modifies these estimates using
information about monthly average cloudiness and sunshine hours
(Moore et al., 1993b; Wilson and Gallant, 2000a,b,c).

The short-wave irradiance is computed at both flat and sloping sites
using a three-part approach in SRAD. The potential or extraterrestrial
irradiance on a horizontal surface just outside the earth's atmosphere is
calculated first. Next, a series of instantaneous clear-sky, short-wave
radiation fluxes are calculated for each of the DEM grid points at
12 minute intervals from sunrise to sunset, and direct beam and diffuse
fluxes are calculated for flat sites and direct beam, circumsolar diffuse,
isotropic diffuse and reflected fluxes are calculated for sloping sites.
These instantaneous values are then summed to obtain daily totals and
these values are adjusted to account for the effects of cloudiness. Daily
temperature is extrapolated across the surface using a method that
corrects for elevation via a lapse rate, slope-aspect effects via a short-
wave radiation ratio, and vegetation effects via a leaf area index [see
Hungerford et al. (1989), Running (1991), Running and Thornton
(1996), and Running et al. (1987) for additional details] and the daily
outgoing and incoming long-wave irradiances are calculated from the
surface temperatures in the first instance and the air temperatures and
fraction of sky visible at each grid point in the second case. The
aforementioned short- and long-wave radiation fluxes are then used to
estimate the surface energy budget at each grid point for a user-
specified period ranging from one day to a year in length.

SRAD is but one of a number of models that have been proposed for
calculating the radiation fluxes and the accompanying land surface
parameters [see Kumar et al. (1997), r.sun (Hofierka, 1997; Šúri and
Hofierka, 2004), Solar Analyst (Fu and Rich, 2000), SolarFlux (Hetrick
et al., 1993a,b; Dubyah and Rich, 1995), and Solei (Miklánek, 1993;
Mészároš, 1998) for additional examples] and the enduring novelty of
SRAD (relative to some of these other approaches) stems from the
attempt that was made to incorporate the effects of cloudiness in the
calculations. All of the aforementioned models document how spatial
variability in elevation, slope, aspect, and shadowing can create very
strong local gradients in solar radiation and thereby exert a large
influence on the photosynthesis and evapotranspiration processes and
ensuing vegetation diversity and biomass production at specific
locations on the land surface [see Austin et al. (1984), Franklin (1995),
Moore et al. (1993b) and Tajchman and Lacey (1986) for early examples
documenting these kinds of relationships].

One last observation worth noting is the difficulty of verifying
these parameter estimates becausemost radiation stations are located
on flat terrain (i.e. horizontal surfaces). One possible way around this
problem is to use satellite data for estimating incoming solar
radiation. Hence, Böhner and Antonić (2009) described one such
study by Dubuyah and Loechel (1997) which combined the coarse
spatial resolution data of Geostationary Satellite Server imagery with
the fine spatial resolution DEM-based topography using the direct-
diffuse partitioning algorithm of Erbs et al. (1982), the elevation
correction formulations of Dubuyah and van Katwijk (1992) and the
various equations describing the topographic effects on direct, diffuse
and reflected radiation (as noted above) and described in detail in
Böhner and Antonić (2009, p. 199–207). The main challenges involve
developing and validating new parameterization schemes that
address process mechanics and space-time issues involving data and
analysis (e.g. Sheng et al., 2009).

5. DEM error and propagation

A chronologically ordered review of the many books and articles
which have been written on digital terrain modeling during the past
25 years would show how DEMs can be produced and analyzed in
both an increasing number and variety of ways nowadays. Such a
review would also demonstrate the many subtleties that are
embedded in the various data sources and methods and how errors
can be introduced at many stages of the production process. The
tendency for different sensors (i.e. radar vs. optical vs. LiDAR for
example) to incorporate systematic and random errors that, in turn,
generate bias in elevation and the computed land surface parameters
(slope, aspect, etc.) was noted earlier.

There are many challenges here. Some can be attributed to the fact
that these errors may vary with the choice of sensor and/or specific
application (i.e. method of deployment) which means that it will be
difficult to subtract one DEM from another to detect altitude variations
for assessing change, erosion, deposition, etc. (e.g. Burns et al., 2010). A
second set of challenges concerns the propagation of the elevation
errors in the primary and secondary land surface parameters and the
considerable effort that usually is required to identify them. The usual
approach for propagating errors incorporates statistically modeling the
error in the DEM (which is usually only partially known) and running a
Monte Carlo analysis (Temme et al., 2009). The best workflows will
utilize these techniques to check for andhopefully remove someor all of
these errors; however, the errors in the source data cannot always be
eliminated and those interested in using the land surface parameters
calculated from DEMs must be cognizant of these errors and how they
may affect their own workflows and the interpretation of the
significance of their results.

That said, it is worth taking stock of what we know about the
accuracy of DEM elevation values and the land surface parameters
calculated from these elevations. Numerous approaches have been
proposed to assess the accuracy of DEM elevation values [see
Hutchinson (2008) and Temme et al. (2009) for additional details].
Many researchers have compared a set of heights derived from the
DEMwith ‘real’ elevation values taken from a more accurate source of
topographic data and then calculated the root mean square error of
elevation (RMSE) to represent the difference between the estimated
and true values (Wise, 2000). One problem with this approach is that
it ignores both the presence of systematic bias and the spatial pattern
of errors which is critical for those land surface parameters that are
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heavily influenced by the shape of the land surface (Hutchinson and
Gallant, 2000; Deng et al., 2008). Carara et al. (1997) suggested five
simple criteria to evaluate DEM quality when the DEM is constructed
from contours – the DEM should have the same values as contours
close to the contour lines, the DEM values must be in the range given
by the bounding contour lines, the DEM values should vary almost
linearly between the values of the bounding contour lines, the DEM
patterns must reflect realistic shapes in flat areas, and the artifacts
must be limited to a small proportion of the data set – that may have
broader relevance. Hutchinson and Gallant (2000) have suggested a
larger and more diverse list of simple metrics for measuring quality
for DEMs constructed from surface-specific point elevation and
contour- and stream-line data that incorporate some of the same
ideas and there is a rapidly growing literature documenting the
quality of the DEMs constructed from remote sensed sources (e.g.
Carabajal and Harding, 2006; Hofton et al., 2006; Rodriguez et al.,
2006; Shortridge, 2006; Berry et al., 2007; Bhang et al., 2007).

Whatever the source of the elevation data, a high resolution DEM
may still have greater uncertainty than a low resolution DEM if we are
less certain of its attribute values and the errors in DEMs may
propagate to the land surface parameters and modeling results in
ways that are not easily predicted— see Aerts et al. (2003), Band et al.
(1995), Bolstad and Stowe (1994), Chow and Hodgson (2009),
Desmet (1997), Endreny and Wood (2001), Fisher and Tate (2006),
Holmes et al. (2000), Hunter and Goodchild (1997), Lindsay (2006),
Lindsay and Creed (2005b), Lindsay and Evans (2006), Van Niel et al.
(2004), Wise (1998), andWood et al. (1997) for examples spanning a
large variety of land surface parameters and DEM data sources.

In one particularly impressive study of this kind, Temme et al.
(2009) examined the propagation of errors fromDEMs for the slope (a
local land surface parameter), the topographic wetness index (a
regional land surface parameter) and the soil redistribution resulting
from water erosion (a complex model output) in the Baranja Hill,
Croatia watershed. The DEM errors propagated strongly to slope (the
mean coefficient of variation across 100 Monte Carlo simulations was
42% for unfilled DEMs and 49% for filled DEMs) but only moderately
for TWI (the mean coefficient of variation of TWI was 10% for unfilled
and 16% for filled DEMs) although the coefficient of variation for TWI
varied more spatially than that of slope. These results show that the
TWI values were less sensitive than slope to the input DEM but this
may have been influenced by the flow routing algorithm (Holmgren,
1994) that was used to calculate upslope contributing areas.

Temme et al. (2009) next used the water-erosion module of the
LAPSUS landscape evolution model (Schoorl et al., 2000) to simulate
erosion and deposition in the Baranja Hill study area for 10 years. The
model utilizes water flow and slope to calculate a sediment transport
capacity and calculates erosion and deposition by comparing this
transport capacity to thepredicted amountof sediment in transport. The
latter was simulated with the same multiple flow direction algorithm
used to calculate TWI above and the approach of Temme et al. (2006)
wasused tohandle theflowsofwater and sediment into sinks. The latter
capability was vitally important because it meant that the model could
simulate erosion anddepositionusingbothunfilled andfilledDEMs. The
results, at first glance, might be viewed as reassuring because the
general erosion and deposition patterns were similar for unfilled and
filled DEMs with erosion occurring in the upper valleys and deposition
occurring in flat areas. However, the mean soil redistribution maps of
the 100 simulations on unfilled DEMs showed considerably more
deposition and less erosion than the filled DEMs (in part because the
depressions were filled prior to the model runs in the latter case) and
the results in both sets ofmodel runswere very sensitive to errors in the
DEM (themean coefficient of variation of soil redistribution was 4600%
for unfilled and 1000% for filled DEMs). Hence, the coefficients of
variation were larger and more spatially variable for soil redistribution
than they were for TWI and slope because the LAPSUS model results
were sensitive to three forms of error in the input DEM — those
associated with the error in the DEM and those that were introduced
into the slope and TWI terms by the same source error.

6. Conclusions

The foregoing review directs attention not only to the tremendous
advances in DEM data sources and digital terrainmodeling techniques
that have characterized the past 25 years, but also to the kinds of
research that will be needed to continue making progress during the
next quarter century. There are at least four research paths that can be
expected to yield substantial benefits over such a timeframe.

The first path should focus on improving our knowledge of the
presence of and propagation of errors in both the current and new
remote sensing data sources that emerge. This is a challenging task
becausemany of the systematic and random errors in the current data
streams are specific to the sensor that is used and the protocols and
methods that have been used in individual projects to guide its
deployment (Dowman, 2004). This state of affairs suggests that we
will need to find ways to clarify and publish this information (since
much of it has been held as proprietary information by the firms that
have built and deployed the aforementioned technologies until now)
and that in many instances we will need to develop sensor-specific
solutions to solve whatever problems are uncovered.

The second path combines field observation and the development
and testing of new analytical methods. Taking the modeling of flow
directions and upslope contributing areas as examples, there is an
urgent need to learn more about the ways in which the land surface
and the interactions with the underlying soil and regolith influence
the rainfall–runoff relationships and the growth and contraction of
flow networks in specific environments. Lindsay and colleagues at the
University of Guelph in Ontario, Canada, for example, are exploring
the spatial pattern and timing of ephemeral flows in headwater
channels that may provide some important new insights [see Lindsay
and Evans (2006) and Lindsay et al. (2008) for some additional
background]. These kinds of projects are time-consuming but vital if
we are to develop DEM datasets and analytical methods that support
the representation of the key hydrologic and geomorphic processes
(i.e. those influencing non-point source pollution) operating in
specific landscapes (e.g. Mitášová et al., 1995).

The third research path is similar to the second line but likely to
yield faster returns. The goal here would be to combine and integrate
“best” practices, as exemplified by the following example. The QD-
TWI model proposed by Barling (1992) would appear to have
considerable merit given what is known about the distribution of
soil moisture alongwith both the surface and subsurface flow patterns
in a variety of semi-arid and arid landscapes. However, the original
QD-TWI model incorporated the D8 flow routing algorithm and
numerous studies have demonstrated that D8 generates many
unfortunate artifacts. The DEMON flow routing algorithm, on the
other hand, offers numerous advantages but sometimes fails in areas
with flat terrain and suffers from slow performance when applied to
relatively fine resolution DEMs covering large areas. Nguyen (2011)
has exploited this opportunity – by building a faster and more robust
version of DEMON along with a flexible version of the QD-TWI model
that allows the user to choose from a variety of flow routing
algorithms – so that terrain analysts can work with both approaches
simultaneously. There aremany opportunities like this one that can be
exploited in the immediate future.

The fourth and final research path concerns scale effects. An
enduring need [see Gallant et al. (2000) for example], the rapid advent
and adoption of fine resolution remote sensing digital elevation data
sources means that there is not only an urgent need to improve our
understandingof theways inwhich thesefine scale (i.e. resolution)data
sources influence the computed land surface parameters, but also a
continuing need to develop and refine techniques that: (1) combine
representations of the land surface across multiple scales (e.g. Gallant
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and Dowling, 2003; Deng and Wilson, 2008 ); and (2) permit the
modern terrain analyst to move seamlessly across scales.

Finally, the foregoing review is hopefully also instructive for those
interested in calculating one or more of the aforementioned land
surface parameters as a part of some digital terrain modeling
workflow and using the results as inputs in some environmental
modeling application(s). The current state-of-the-art suggests that
the present-day terrain analyst will need to choose wisely among the
various options while paying special attention to their own project
goals, the advantages and disadvantages of different data sources and
digital terrain modeling techniques, the characteristics of their study
area(s) and how errors might have been introduced and propagated
in their workflows, and the significance of these errors for the results
that are produced.
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