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Abstract
The study of surface processes and landforms requires quantitative characterization of the topography. New theoretical/
conceptual and practical advances in understanding and mapping various aspects of geomorphological systems have

emerged from new geospatial data and analysis of the topography. This chapter describes geomorphometry, or the science

of quantitative land-surface characterization, and how it can be used to represent and sample the land surface, generate
digital elevation models (DEMs), correct errors and artifacts from surface models, compute land-surface parameters and

objects, and use various forms of quantitative information in different application domains to address or solve problems.
Glossary
Digital elevation model A digital elevation model (DEM)

is generally a land-surface model that attempts to accurately

portray the altitude field of the topography. In

geomorphology, it commonly takes the form of a raster data

layer representing a field of square tessellations. The

resolution of the grid cells is usually determined based on

the source data utilized and the desired scale for

representing the topography.

Digital terrain modeling Digital terrain modeling (DTM)

refers to a workflow process of acquiring data that samples

the altitude field, preprocessing the data to generate a digital

elevation model, and error and uncertainty analysis to

identify and remove systematic and random errors.

Error propagation Digital elevation models exhibit an

inherent error due to digital terrain modeling that includes

choice of sensor in data capture, algorithm and methods

selection in DEM generation, and effective implementation

of DEM error correction, given DEM error and uncertainty
J.P., Bishop, M.P., 2013. Geomorphometry. In: Shroder, J. (Editor in

Bishop, M.P. (Ed.), Treatise on Geomorphology. Academic Press,

go, CA, vol. 3, Remote Sensing and GIScience in Geomorphology,

–186.

Treatise on Geomo
analysis. Such errors are propagated in terrain analysis in

the computation of land-surface parameters and objects

and in modeling efforts that utilize parameters and objects.

Geomorphometry The discipline that is concerned with

the science of quantitative land-surface characterization.

Land-surface objects Land-surface objects are spatial

entities that represent a meaningful segmentation of the

Earth’s surface. They are generated from land-surface

parameters using a variety of algorithms and methods, and

generally relate to the morphology of the topography in

terms of landform elements, features, or functional units.

Terrain segmentation can also relate to topographic

position and structure, surface material, or process

domains, if properly defined and delineated.

Land-surface parameters Land-surface parameters are

also called geomorphometric parameters, and they attempt

to quantitatively characterize various aspects of the

topography. They can be defined and classified based on

geometry, scale, and by surface-process characterization.
rphology, Volume 3 http://dx.doi.org/10.1016/B978-0-12-374739-6.00049-X
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They are used to generate land-surface objects and

characterize process mechanics in surface-process modeling.

A variety of parameters such as slope, slope azimuth,

curvature, surface roughness, and relief are used for

studying geomorphological systems and for

geomorphological mapping.

Segmentation Segmentation refers to the partitioning of

the land surface into meaningful spatial entities.
Segmentation is required for object-oriented analysis of

land-surface objects.

Surface-process modeling Surface-process modeling

refers to physics-based deterministic modeling that

attempts to characterize process mechanics and how

topography governs various process rates, and the

influence of various processes on topographic landscape

evolution.
3.7.1 Introduction

The topography plays a fundamental role in modulating several

components of Earth’s dynamic systems including atmospheric,

geomorphic, hydrologic, ecologic, and geological processes.

The topography constrains the operational scale of surface

processes, and partially governs both climate and tectonic for-

cing (Molnar and England, 1990; Bishop et al., 2010; Koons

et al., 2012). The strength of the linkage between form and

process can range from weak to strong, and may or may not be

inherently visible on the landscape depending on the com-

plexity of the topography. Nevertheless, moderate to strong

linkages have been observed, such that an understanding of the

nature of the land surface can provide insights and under-

standing of the nature and magnitude of several processes

(Hutchinson and Gallant, 2000). Consequently, it is necessary

to quantitatively characterize the land surface and segment the

topography into fundamental spatial units, as the topography

inherently represents the results of the interplay between vari-

ous systems, and records an imprint of landscape dynamics

(over a limited time). Therefore, the utility of digital elevation

models (DEMs) and the analysis of topography (geomorpho-

metry) have and will continue to revolutionize the field of

geomorphology, as critical information regarding process

mechanics, process domains, feedback mechanisms, poly-

genetic evolution, and landforms continues to be investigated

and generated. Furthermore, with the rapid proliferation of

geographic information technologies, new data, algorithms,

and analysis/modeling techniques allow new capabilities. These

capabilities represent the evolution of the field of geomor-

phometry, which, in its broadest sense, refers to the science of

quantitative land-surface characterization (Pike, 1995, 2000) or

digital terrain analysis. For more details regarding the definition

and terminologies used in geomorphometry, see Wilson and

Gallant (2000a), Li et al. (2005), Zhou et al. (2008), Pike et al.

(2009), Hengl and Reuter (2009), and Wilson (2012).

Modern geomorphometry focuses on the extraction of

land-surface parameters and the segmentation of the land-

scape into spatial entities/features (land-surface objects) from

digital topography. This characterization relies on the so-called

specific and general modes of geomorphometric analysis that

were first defined by Evans (1972). The specific mode of an-

alysis attempts to describe discrete surface features (i.e.,

landforms), whereas the general mode attempts to describe

the continuous land surface. Pike et al. (2009) have since

updated these definitions, such that a land-surface parameter

is a descriptive measure of surface form (e.g., slope, slope

azimuth, curvature) and a land-surface object is a discrete
surface feature (e.g., watershed, cirque, alluvial fan, drainage

network). Although this definition represents an improve-

ment, it is worth noting that this is a somewhat arbitrary

distinction, and there are already research examples that

demonstrate that these two perspectives are closely linked

to one another (e.g., Gallant and Dowling, 2003; Deng and

Wilson, 2008). Furthermore, it is clear that formalizing such

linkages is necessary in geomorphological research to address

concepts such as surface-process overprinting and polygenetic

evolution and to address multiple perspectives in geo-

morphological mapping (Bishop et al., 2012).

Collectively, geomorphometry is a rapidly evolving and

complicated field. This is in part due to its multidisciplinary

nature and the inclusion of information technology. Similar to

the field of geographic information science, it is based on de-

velopments in a variety of fields including source and end-user

disciplines. It not only attempts to deal with theoretical/con-

ceptual issues involving representation and spatio-temporal

variation, but also includes issues of data collection and an-

alysis, numerical modeling, and the utilization of other domain

knowledge for conceptual and practical problem solving.

Consequently, the field of geomorphometry is based on a sci-

entific treatment of ‘land surface’ and its characterization that

accounts for surface processes and morphology. Rapid

evolution has been facilitated by geographic information

technology and the widespread availability of DEMs. Geo-

morphologists now have many new capabilities to manipulate

and extract information from a variety of data sources. Never-

theless, it is important to recognize the empirical nature of

many forms of spatial analysis and modeling, and many issues

raise important questions about the assumptions and validity

of various approaches (Bishop et al., 2001).

Many questions still remain, and geomorphologists must

be aware of the advantages and limitations associated with

various representations and data structures, metrics/indices,

spatial modeling approaches, and their utility for geo-

morphological investigations. Furthermore, investigators must

be familiar with the mathematical underpinnings of geo-

morphometric analysis in order to adequately use information

and to interpret the results (Bishop and Shroder, 2004a).

Collectively, many issues point to a series of key questions that

in general include: (1) How should the land surface be rep-

resented? (2) What preprocessing is required to produce a

useable DEM? (3) What approach to error and uncertainty

analysis is required? (4) What algorithms are best for pro-

ducing land-surface parameters? (5) What methods are best

for producing land-surface objects? (6) Is there a need to

develop new parameters and objects to address a particular
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problem? (7) What algorithms and approaches are best suited

for a particular mapping application or do methods even

exist? (8) Does an adequate model exist or is there a need to

develop or modify one?

Many of these questions relate to data sources, issues, and

capabilities, although it is important to note that considerable

research is still required to address a whole host of issues in

geomorphology. In many cases, the answers to these questions

may not be clear, as software-tool development has focused on

the tool-box approach, foregoing formal scientific treatments

to mapping and geographic information system (GIS)-based

analysis/modeling. These challenges, however, can also be

attributed to the steady growth in the development and sheer

number of parameters and algorithms for processing DEMs.

Consequently, the values of parameters depend on a variety of

factors, including the parameterization scheme, measurement

scale of data, computational scale of analysis, and many em-

pirical parameters that are used to address several conceptual

issues. This represents a serious issue in geomorphology, as the

spatial patterns associated with many metrics/indices may not

represent real-world phenomena, and the use of empirical

parameters reduces the ability to formalize important aspects

of the gemorphological system (Bishop et al., 2012).

Notwithstanding these challenges, land-surface parameters

and objects have been adopted in a variety of applications and

environmental settings. Geomorphometry has been used to

predict the distribution of soil properties (e.g., Zhu et al.,

1997; Bishop and Minasny, 2005), model soil redistribution

(i.e., erosion and deposition) processes (e.g., Mitášová et al.,

1995), assess the likelihood of slope hazards (e.g., Guzzetti

et al., 2005; Kheir et al., 2007), model solar-radiation poten-

tial (e.g., Reuter et al., 2005), improve vegetation mapping

(e.g., Bolstad and Lillesand, 1992; Antonić et al., 2003),

analyze wildfire propagation (e.g., Hernández Encinas et al.,

2007), assess the role of surface processes in mountain topo-

graphic evolution (Burbank et al., 1996; Bishop and Shroder,

2000; Bishop et al., 2003), and to predict water flow, drainage,

and flooding in many hydrological applications. More

applications are rapidly emerging, and geomorphologists play

an important role in the development and evaluation of ap-

proaches that are based on geomorphological concepts.

Collectively, this chapter examines the data sources and

methods used to generate DEMs, and how land-surface par-

ameters and objects can be used in geomorphology. A typical

digital terrain analysis workflow is presented that includes basic

data capture, data preprocessing, DEM generation, compu-

tation of land-surface parameters and objects, landform classi-

fication, and surface-process modeling. Throughout, examples

are provided of how parameters and geomorphometric ana-

lyses can provide new opportunities for geomorphological re-

search. The focus is on presenting current capabilities and

issues associated with the quantitative characterization of the

topography.
Figure 1 The main tasks associated with digital terrain modeling.
Reproduced from Hutchinson, M.F., Gallant, J.C., 2000. Digital
elevation models and representation of terrain shape. In: Wilson, J.P.,
Gallant, J.C. (Eds.), Terrain Analysis: Principles and Applications.
John Wiley and Sons, New York, pp. 29–50.
3.7.2 Digital Terrain Modeling

The generation of DEMs involves data modeling or represen-

tation choices, sampling the land surface, representing

and creating a surface model from the sampled heights, and
correcting the errors and artifacts in the surface model (Hengl

and Reuter, 2009). Each phase in the production of a DEM is

critical for determining its utility, and in assessing the amount

of error that will propagate through the analysis phase. The

general workflow is depicted in Figure 1.
3.7.2.1 Representation

Many topics in geomorphology and geomorphometry are in-

herently related to the space–time representation of topo-

graphy (Bishop and Shroder, 2004b). This topic is complex,

and a variety of philosophical, cognitive, and natural-science

perspectives exist. The current use of representation is dom-

inated by static cartographic representations. Although this

approach provides many advantages in terms of spatial over-

lay, management of data, basic spatial analysis, and infor-

mation distribution, it does not address many issues related to

surface processes and landforms.

Topographic variation can be represented in a variety of

ways using data models. The common data models are the

field (layer), entity (object), and network data models, which

can be linked to a relational data model (Goodchild, 1992).

These data models are represented in a computer using data

structures (i.e., raster and vector). Consequently, topography

can be represented by many field models (sampled points,

contours, polygons, tessellations, triangular nets) to charac-

terize the continuous spatial variation in altitude. Object

models are used to define well-defined features, assuming that

discrete boundaries actually exist, whereas indeterminant

boundaries have been recognized to pose a unique challenge,

as environmental gradients or zones of homogeneous and

MAC_ALT_TEXT Figure 1
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heterogeneous surface properties can effectively represent

boundaries or limits to the spatial distribution of phenomena

(Burrough, 1996; Usery, 1996; Lagacherie et al., 1996). Earth

scientists have noted the advantages and disadvantages of such

data models and have recognized that these representations do

not effectively address process mechanics or dynamics (Raper

and Livingstone, 1995). It is also important to note that field

and object models do not formally represent the complex na-

ture of landforms, as issues of scale, organization, composition,

and age must be taken into consideration. Furthermore, the

degree to which qualitative and quantitative analysis should be

used to characterize the land surface needs to be determined, as

qualitative analysis is supported by the entity view, whereas the

science of studying process mechanics, feedback mechanisms,

geodynamics and landscape evolution tends to focus on con-

tinuous space (Raper and Livingstone, 1995).

Clearly, determining how to best represent the land surface

is a complex issue. Dikau (1989) indicated that a digital relief

model involving the parameterization of relief units could be

used to represent topography that is hierarchically organized.

Relief is scale dependent, and the concept of homogeneous

relief can be defined based on distance and direction. Never-

theless, relief and many other land-surface parameters are

scale dependent. Does this mean that the scale dependence

and the anisotropic nature of the topography need to be

represented? Should the hierarchical spatial structure of the

topography be represented? Furthermore, how should process

mechanics, process–form relationships, and temporal dy-

namics be characterized?

An intriguing proposition for geomorphometry has been

presented by Cova and Goodchild (2002) that involves the

extension of spatial representation to include fields of spatial

objects. This effectively represents the linking of continuous

space with object representation. It also allows considerable

flexibility in terms of representing the complexity associated

with landforms, as the issues of homogeneity, heterogeneity,

complexity, and other concepts can be addressed, as a tessel-

lation can have more than one object and the objects can have

discrete or fuzzy boundaries. In addition, an object hierarchy

can be developed to address issues associated with scale.

Furthermore, it also allows the representation of process via

‘process objects,’ wherein a multitude of process objects can

simultaneously alter the topography at fundamentally different

scales. This allows the integration of process modeling and

mapping in a seamless way, and raises the important issue

of parameterization schemes for characterizing the process

mechanics and specific process–form relationships. Such for-

mal representations of the topography in geomorphology are

required to validate the results obtained via empirical analysis

using geospatial technologies. In addition, such a represen-

tation can handle temporally changing spatial patterns by using

a dynamic representational scheme that results from the pro-

cess dynamics. Consequently, spatio-temporal relationships are

inherently represented. Several complexities associated with

3-D and temporal representation, however, remain.
3.7.2.2 Data Capture

The data sources and processing methods for generating DEMs

have evolved rapidly over the past 20–30 years. Data collection
approaches (Table 1) have been categorized by Nelson

et al. (2009) and include: (1) ground-survey techniques

(electronic theodolites, total stations, electronic distance

measuring (EDM), and global positioning system (GPS)

units); (2) existing topographic maps (derivation of contours,

streams, lakes, and spot heights from existing hardcopy

topographic maps); and (3) remote sensing (both air and

space-borne optical, radar, and Light Detection and Ranging

(LiDAR) sensors).

Modern-day data collection is based on remote sensing for

the production of DEMs, as rapid progress has occurred over

the past two decades. Global DEM data products from the

Shuttle Radar Topographic Mission (SRTM) and the Advanced

Spaceborne Thermal Emission and Reflectance Radiometer

Global Digital Elevation Model (ASTER GDEM) were released

in 2000 and 2009, respectively. The 3 arc-second SRTM DEM

covers a large fraction of the globe (from 601 N to 581 S) and

has already emerged as one of the most consistent, complete,

and popular environmental datasets in the world (Zandber-

gen, 2008; Nelson et al., 2009). The 3 arc-second (B90 m)

grid spacing is much better than the 1 km spacing of the

worldwide GTOPO30 DEM, and an accuracy assessment using

kinematic GPS data showed good absolute height accuracy,

with 90% of the errors o5 m (Rodriguez et al., 2006). This

product must nevertheless be used carefully because: (1) it

represents a digital surface model (DSM) (not a bare-earth

model); (2) surface characteristics may affect accuracy; (3)

voids generally occur at land–water margins; (4) problems

may occur in desert and mountain areas due to foreshadowing

and shadowing effects (Rodriguez et al., 2005); and (5) the

current 90-m resolution provided by the global SRTM DEM is

not fine enough for accurate surface characterization and the

mapping of soils, vegetation, and many landforms (Gessler

et al., 2009). It represents, however, an excellent dataset for

geomorphometric analysis of mountain environments to

study the influence of glaciations and tectonics on landscape

evolution (Figure 2).

Some, but probably not all of the aforementioned prob-

lems, may be addressed by the ASTER GDEM. This relatively

new product offers better resolution (1 vs. 3 arc-seconds),

improved spatial coverage (831 N to 831 S), as well as com-

parable vertical and horizontal accuracy (Hiranoa et al., 2003;

Nelson et al., 2009; Slater et al., 2009). The release of this

product is so recent that there are few published reports

documenting the strengths and weaknesses of this new data

source for specific locations and applications, although the

improvement in the measurement scale should greatly facili-

tate geomorphological investigations (Figure 3).

Recently, LiDAR surveys have been conducted, resulting in

the generation of DEMs with improved resolution (Figure 4).

Consequently, the reliance on LiDAR surveys has increased

quickly, and this source now dominates local and regional

projects everywhere. Belgium and the Netherlands, for ex-

ample, have produced national LiDAR DSMs at resolutions of

2–5 m, and much finer-resolution DEMs have been produced

for many smaller areas as well (Nelson et al., 2009). The ad-

vantages of using LiDAR include the high density of sampling,

high vertical accuracy, and the opportunity to derive a set

of surface models, given that some laser-scanning systems

can already provide at least two versions of the surface: the



Figure 2 Shuttle Radar Topographic Mission (SRTM) 3 arc-second
DEM for the Shimshal Valley in northern Pakistan. The 90 m
resolution allows a relatively accurate geomorphometric
characterization of the region for studying surface processes and
tectonics.

Figure 3 Advanced Spaceborne Thermal Emission and Reflectance
Radiometer Global Digital Elevation Model (ASTER GDEM) for the Mt.
Everest region in Nepal. The 30 m resolution allows a more detailed
assessment of the mountains, although several errors and artifacts
are found in such high-mountain environments. ASTER GDEMs in a
less complex topography are usually of higher quality. The displayed
x and y dimensions are 216 km, respectively.

Table 1 Key characteristics of data sources

Source Resolution (m) Accuracy Footprint (km2) Postprocessing
requirements

Elevation/
surface

Ground survey Variable but usually
o5 m

Very high vertical and
horizontal

Variable, but usually small Low Elevation

GPS Variable but usually
o5 m

Medium vertical and
horizontal

Variable, but usually small Low Elevation

Table digitizing Depends on map scale
and contour interval

Medium vertical and
horizontal

Depends on map footprint Medium Elevation

On-screen digitizing Depends on map scale
and contour interval

Medium vertical and
horizontal

Depends on map footprint Medium Elevation

Scanned topo-map Depends on map scale
and contour interval

Medium vertical and
horizontal

Depends on map footprint High Elevation

Ortho photography o1 Very high vertical and
horizontal

– High Surface

LiDAR 1–3 0.15–0.11 m vertical, 1 m
horizontal

30–50 h� 1 High Surface

InSAR/IfSAR 2.5–5 1–2 m vertical, 2.5–10 m
horizontal

Depends on method of
acquisition

High Surface

SRTM, Band C 90 (30) 16 m vertical, 20 m
horizontal

Almost global 601 N–581 S Potentially high Surface

SRTM, Band X 30 16 m vertical, 6 m
horizontal

Similar to Band C, but only
every second path is
available

Potentially high Surface

ASTER 30 7–50 m vertical, 7–50 m
horizontal

3600 Medium Surface

SPOT 30 10 m vertical, 15 m
horizontal

72 000 per swath Medium Surface

Source: Modified from Nelson, A., Reuter, H.I., Gessler, P., 2009. DEM production methods and sources. In: Hengl, T., Reuter, H.I. (Eds.), Geomorphometry: Concepts, Software, and

Applications. Elsevier, Amsterdam, pp. 65–85.
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vegetation canopy (first returns) and ground surface (last

returns), which should help with the modeling of erosion

and water budgets. The smaller footprint and measurement

challenges encountered in areas with tall buildings, dense-

vegetation canopies, and water surfaces make this a relatively

MAC_ALT_TEXT Figure 2
MAC_ALT_TEXT Figure 3


Figure 4 Five-meter resolution digital elevation model (DEM)
generated from bare-earth LiDAR data from the North Carolina
Floodplain Mapping Program. The area is located in the Blue-Ridge
Province of western North Carolina, and is approximately 232 km2 in
size. The region exhibits an elevation range of 867 m (1454–587 m)
and has a mean slope of 171. The incised terrain in the southeast
portion of the DEM represents the beginning of the Blue-Ridge
Escarpment. DEM courtesy of Jeffrey Colby, Appalachian State
University.
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expensive option, and several studies have documented how

the elevation accuracy of LiDAR data varies with both the

sensor system and the land-cover characteristics (e.g., Dow-

man, 2004; Hodgson et al., 2005).
3.7.2.3 Data Preprocessing and DEM Construction

Regardless of the representational scheme, preprocessing of

the elevation data for analysis can be difficult, as altitude is but

one of the land-surface characteristics that are required for

various applications. The morphological accuracy can only be

assessed by measuring surface parameters and objects such as

the slope angle, slope azimuth, curvature, drainage lines, and

landforms in the field, and then comparing their magnitudes,

shapes, distributions, and locations with the values obtained

by geomorphometric analysis (e.g., Fisher, 1998; Wilson et al.,

2008). Reuter et al. (2009) suggested that the true utility of

DEMs for geomorphometric analysis can only be assessed by

determining the following: (1) accuracy of surface-roughness

representation; (2) accuracy of land-surface morphology; (3)

accurate detection of actual ridge- and stream-lines; and (4)

spatial consistency of altitude measurements. Such issues are

interrelated, and the frequency and magnitude of errors will

depend on the technologies and methods used to collect the

source data, the preprocessing algorithms that are applied, and

the complexity of the land surface itself.

Not surprisingly, the horizontal and vertical resolution of the

elevation data used to portray a terrain surface will have a sig-

nificant influence on the level of detail and the accuracy of the
DEM, and on the analysis results (MacMillan and Shary, 2009).

Several authors have documented the effects of grid spacing on

the value and accuracy of land-surface parameters and landform

objects (e.g., Zhang and Montgomery, 1994; Florinsky, 1998;

Jones, 1998; Wilson et al., 2000; Thompson et al., 2001; Shary

et al., 2002; Tang et al., 2002; Kienzle, 2004; Warren et al., 2004;

Zhou and Liu, 2004; Raaflaub and Collins, 2006). The increasing

interest in various forms of multiscale analysis (e.g., Bishop et al.,

2003; Gallant and Dowling, 2003; Sulebak and Hjelle, 2003;

Deng and Wilson, 2008; Bishop et al., 2012) and the need to be

able to move seamlessly across scales indicate that more research

on scale and its effects is required.

Other decisions made about unwanted depressions (i.e.,

spurious pits or sinks) will also have an impact on subsequent

geomorphometric analysis and interpretation of the results. Two

approaches have been utilized and include: (1) progressively

filling the sinks by increasing their elevation values until the

elevation of their lowest outflow point is reached (e.g., Jenson

and Domingue, 1988; Martz and de Jong, 1988; Soille and

Gratin, 1994; Planchon and Darboux, 2001; Wang and Liu,

2006) and (2) creating a descending path from the bottom of the

sink by carving the terrain along this path until the nearest point

is reached, which has an elevation lower than the bottom of the

sink (e.g., Reiger, 1992; Morris and Heerdegen, 1988; Martz and

Garbrecht, 1999; Soille et al., 2003; Soille, 2004). Reuter et al.

(2009) recently used both of these approaches along with one

that combined sink filling and carving, such that the sum of the

differences in elevation between the input and the output DEMs

that did not have sinks was minimized. Lindsay and Creed

(2005a, b, 2006) have also combined elements of the afore-

mentioned approaches and used them to distinguish artifact and

real depressions in digital elevation data, and propose a min-

imum-impact approach for removing artifact depressions in

relatively flat landscapes. Grimaldi et al. (2007) have proposed

an alternative physically-based approach to remove spurious pits

as well.

At least two other related challenges may need to be ad-

dressed. The first concerns the problem of unresolved flow

directions on flat terrain, because the assignment of flow dir-

ections relies on the presence of elevation differences between

adjacent cells to drive the flow. The presence of lakes and

reservoirs, and reliance on the first of the aforementioned

approaches for filling sinks, may exacerbate this challenge by

creating artificial flat regions. Whatever the cause, one of two

approaches is typically used to remove or minimize these

kinds of problems. The first relies on an iterative procedure to

assign a single flow direction to a neighboring cell without

alteration of the elevation values (e.g., Jenson and Domingue,

1988), whereas the second method makes small alterations to

the elevation of the flat cell(s) in order to create a small arti-

ficial gradient (e.g., Garbrecht and Martz, 1997). The solutions

obtained with these approaches will vary slightly from one to

the other, and an in-depth knowledge of field conditions will

generally be required to know whether one approach pro-

duces superior results in most landscape settings.

The second challenge is the need to reconcile the DEM and

drainage lines acquired from some other dataset (Lindsay

et al., 2008). One approach relies on ‘stream burning,’ where

the local topography is altered to provide consistency with

some existing vector hydrography dataset (Saunders and

MAC_ALT_TEXT Figure 4
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Maidment, 1996) and the second method utilizes the stream

network as a part of the surface-fitting approach used to

generate square-grid DEMs (Hutchinson, 1989). The latter has

been used here almost exclusively in the authors’ hydrological

work, in part because of existing software tools that tackle the

past three problems (i.e., unwanted depressions, unresolved

flow directions on flat terrain, and reconciliation of elevation

and hydrography datasets) simultaneously.

The rapid growth in sources of mass-produced, remote-

sensing-derived DEMs during the past two decades has de-

manded new forms of DEM preprocessing. For example, Reuter

et al. (2009) and Webster and Dias (2006) described various

approaches and opportunities for ortho-rectifying DEMs, re-

ducing local outliers and noise, filtering water surfaces, filtering

pure noise, filtering forests in SRTM DEMs, reducing padi terraces

(i.e., areas with closed contours where all the surrounding pixels

show the same value), filling voids and sinks, mosaicking ad-

jacent DEMs, and filtering LiDAR DEMs. Some problems are

more difficult to fix than others, and several authors have noted

the presence of systematic and random errors that are not so easy

to detect and correct in LiDAR datasets (e.g., Filin, 2003; Kat-

zenbeisser, 2003; LaLonde et al., 2010). The detection of varying

deflection errors and of time delays between measurements is

especially difficult and specific to the composition of the LiDAR

sensor system, and the large number of parameters that were

assigned when the individual sensor systems were manufactured

(Dowman, 2004). Reuter et al. (2009) also noted that two

additional trends have emerged in recent years. The first is the

integration of topographic and auxiliary information (such that

the location of lakes, streams, ridges, and breaks will be identi-

fied from satellites and incorporated into the DEM processing

chain) and the second is the increased use of fully data-driven

simulation methods that reduce some or all of the afore-

mentioned errors by calculating the average value of the land-

surface parameter from multiple equi-probable realizations of

the DEM (e.g., Burrough et al., 2000b; Hengl et al., 2004; Raa-

flaub and Collins, 2006).
3.7.2.4 Error and Artifacts

With new data sources and information technologies, DEMs

can now be produced in a variety of ways. Many subtleties are

embedded in the various data sources and methods, and

errors can be introduced at many stages of the production

process. Some can be attributed to the fact that these errors

may vary with the choice of the sensor and a specific appli-

cation (i.e., method of deployment). Consequently, DEM

differencing cannot be accurately used to detect altitude vari-

ations for assessing change, erosion, deposition, etc. (Burns

et al., 2010). A second set of challenges concerns the propa-

gation of the elevation errors in primary and secondary

land-surface parameters, and the considerable effort that is

generally required to identify them. The general approach

for propagating errors incorporates statistical modeling of the

error in the DEM (which is generally only partially known)

and running a Monte Carlo analysis (Temme et al., 2009).

Digital terrain modeling will utilize various techniques to

detect and remove some or all of these errors. Data source

errors, however, cannot always be eliminated, and those
interested in using land-surface parameters calculated from

DEMs must be cognizant of these errors and how they may

affect the analysis and interpretation of results.

It is worth reviewing what is known about the accuracy of

DEM elevation values and the land-surface parameters calcu-

lated from these elevations. Several approaches have been

proposed to assess the accuracy of DEM elevation values (e.g.,

Hutchinson, 2008; Temme et al., 2009). Many researchers

have compared DEM-derived altitudes with elevation values

taken from a more accurate source of topographic data,

computing the root-mean-square error (Wise, 2000). One

problem with this approach is that it ignores both the pres-

ence of systematic bias and the spatial pattern of errors, which

is critical for those land-surface parameters that are heavily

influenced by the shape of the land surface (Hutchinson and

Gallant, 2000; Deng et al., 2008). Carara et al. (1997) sug-

gested simple criteria to evaluate DEM quality when the DEM

is constructed from contours: (1) the DEM should have the

same values as contours close to the contour lines; (2) the

DEM values must be in the range given by the bounding

contour lines; (3) the DEM values should vary almost linearly

between the values of the bounding contour lines; (4) the

DEM patterns must reflect realistic shapes in flat areas; and (5)

the artifacts must be limited to a small proportion of the data

set. Hutchinson and Gallant (2000) have suggested a larger

and more diverse list of simple metrics for measuring quality

for DEMs constructed from surface-specific point elevation

and contour- and stream-line data that incorporate some of

the same ideas, and a rapidly growing literature is docu-

menting the quality of DEMs constructed from remotely

sensed sources (e.g., Carabajal and Harding, 2006; Hoften

et al., 2006; Rodriguez et al., 2006; Shortridge, 2006; Berry

et al., 2007; Bhang et al., 2007).

Whatever the source of the elevation data, a high-resolution

DEM may still have greater uncertainty than a low-resolution

DEM. Furthermore, the errors in DEMs may propagate to the

land-surface parameters and modeling results in ways that are

not easily predicted. See Bolstad and Stowe (1994), Band et al.

(1995), Desmet (1997), Hunter and Goodchild (1997), Wood

et al. (1997), Wise (1998), Holmes et al. (2000), Endreny and

Wood (2001), Aerts et al. (2003), Van Niel et al. (2004),

Lindsay and Creed (2005b), Fisher and Tate (2006), Lindsay

(2006), Lindsay and Evans (2006), and Chow and Hodgson

(2009), for examples spanning multiple DEM data sources and

land-surface parameters.

In one particularly impressive study, Temme et al. (2009)

examined the propagation of errors from DEMs in the

computation of the slope (a local parameter), the topo-

graphic-wetness index (a regional parameter), and the soil

redistribution resulting from water erosion (a complex model

output) in the Baranja Hill watershed in Croatia. The DEM

errors propagated strongly to slope (the mean coefficient

of variation across 100 Monte Carlo simulations was 42%

for unfilled DEMs and 49% for filled DEMs), but only mod-

erately for the wetness index (the mean coefficient of variation

was 10% for unfilled and 16% for filled DEMs), although

the coefficient of variation for the index varied more spatially

than that of slope. These results show that the wetness index

values were less sensitive than slope to the input DEM, but

this may have been influenced by the flow-routing algorithm
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(Holmgren, 1994) that was used to calculate upslope con-

tributing areas.

Temme et al. (2009) next used the water-erosion module

of the LAPSUS landscape-evolution model (Schoorl et al.,

2000) to simulate erosion and deposition in the Baranja Hill

study area for 10 years. The model utilizes water flow and slope

to calculate a sediment-transport capacity, and calculates ero-

sion and deposition by comparing this transport capacity with

the predicted amount of sediment in transport. The latter was

simulated with the same multiple flow-direction algorithm

used to calculate the wetness index, and the approach

of Temme et al. (2006) was used to handle the flows of water

and sediment into sinks. The latter capability was very im-

portant because it meant that the model could simulate erosion

and deposition using both unfilled and filled DEMs. The

results, at first glance, might be viewed as reassuring because the

general erosion and deposition patterns were similar for un-

filled and filled DEMs, with erosion occurring in the upper

valleys and deposition occurring in flat areas. The mean

soil-redistribution maps of the 100 simulations on unfilled

DEMs, however, showed considerably more deposition and less

erosion than the filled DEMs (in part because the depressions

were filled before the model runs in the latter case), and the

results in both sets of model runs were very sensitive to errors in

the DEM (the mean coefficient of variation of soil redistri-

bution was 4600% for unfilled and 1000% for filled DEMs).

Hence, the coefficients of variation were larger and more spa-

tially variable for soil redistribution than they were for the

wetness index and slope, because the LAPSUS model results

were sensitive to three forms of error in the input DEM –

those associated with the error in the DEM and those that were

introduced into the slope and topographic wetness index terms

by the same source error. These kinds of dependencies are likely

to be embedded in many of the analysis and modeling appli-

cations that incorporate one or more of the aforementioned

primary and secondary terrain parameters. Consequently, error

analysis is critical in geomorphometry, and preprocessing error-

removal techniques are usually required.
3.7.3 Land-Surface Parameters

Computations of land-surface parameters attempt to charac-

terize various multiscale properties of the terrain, and are used

to extract land-surface objects. Consequently, many par-

ameters can be classified based on geometry considerations,

scale, or use in process mechanics and numerical modeling.

Wilson and Gallant (2000a) classified them as primary and

secondary, given that they constitute the basic building blocks

for landform classification and other forms of more sophisti-

cated analysis and modeling.
Figure 5 Slope-angle map generated from 5 m LiDAR DEM
displayed in Figure 4. Slope variations are significant in mountain
environments and can reflect variations in erosion, lithology, and
tectonics. Slope information is also critical for evaluating natural-
hazard potential and for planning purposes.
3.7.3.1 Primary Parameters

Many local parameters are calculated by moving a three-

by-three window across a grid and computing land-surface

parameters for the target cell (i.e., the central cell in the three-

by-three window). There are special rules on how to handle

the edges, and this approach produces a new grid or GIS layer

with the same dimensions as the DEM for each parameter. The
most frequently used parameters represent the first and second

derivatives of the altitude field. The two main geometric

properties are the average slope gradient, S, and the slope

azimuth, f. The average slope gradient accounts for orth-

ogonal directions such that

S¼ q z

q x
,
q z

q y

� �
½1�

where z represents the altitude, and x and y represent the

directions. Several algorithms or modeling approaches may

require the use of S, or the slope angle b, which is defined as

b¼ arctanðSÞ ½2�

Slope information can also be expressed as slope percent-

age and surface area, As, which can be approximated by

As ¼
Acell

cosb
½3�

where Acell is the area of a grid cell. Slope is routinely used in

sediment-transport modeling, landform mapping, surface-

energy-budget studies, and for characterizing various aspects

of process mechanics related to fluvial, mass movement, and

glacier-erosion dynamics (Figure 5).

The direction of the slope, or slope azimuth, is another

critical geometric property that governs water and sediment

flows, while also reflecting the orientation structure of the

topography as governed by lithology and structural influences.

Gallant and Wilson (1996) defined it as

f¼ 180� arctan
q

p

� �
þ 90

p

9p9
½4�
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Figure 6 Profile-curvature map generated from the 5 m LiDAR DEM
displayed in Figure 4.

Figure 7 Tangential-curvature map generated from the 5 m LiDAR
DEM displayed in Figure 4.
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where

p¼ q z

q x
, q¼ q z

q y
½5�

Slope azimuth is a circular parameter and is frequently

transformed using cos f and sin f to examine linear trends

in northerness and easterness, respectively. Slope azimuth is also

important is solar-radiation modeling. As with slope, various

algorithms can be used for computation, and each will produce

slightly different estimates across a range of land-surface con-

ditions. Details about the performance of various equations can

be found in Skidmore (1989) and Hengl and Evans (2009).

Terrain curvature is also frequently used to estimate the

magnitude of concavity and convexity of the land surface. The

convention followed in the Earth sciences is for a positive

curvature value to represent a convex surface shape, whereas a

negative value represents a concave surface shape (Olaya, 2009).

The profile (or vertical) curvature, Cprofile, and tangential (hori-

zontal) curvature, Ctangential, are generally used to distinguish

locally convex and concave shapes. They are defined as

Cprofile ¼
p2ðr þ 2Þpqrsþ q2t

ðp2 þ q2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ p2 þ q2Þ3

q ½6�

Ctangential ¼
q2ðr � 2Þpqsþ p2t

ðp2 þ q2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ½7�

where r, s, and t represent

r ¼ q 2z

q x2
, s¼ q 2z

q xq y
, t ¼ q 2z

q y2
½8�

Convex profile curvature indicates acceleration of flows

and a local increase in potential energy, whereas concave

profile curvature indicates a flattening of the slope and

therefore a decline in potential energy (Figure 6). Concave

tangential curvature indicates convergence and convex tan-

gential curvature indicates divergence of flow lines, which may

in turn influence overland flow paths, soil moisture distri-

bution, and soil redistribution (Figure 7). Planform curvature

is sometimes used to describe the curvature of contour

lines and should yield results similar to tangential curvature,

as long as the contour lines describe the shape of the land

surface (Gallant and Wilson, 2000). Other forms of curvature

can also be utilized, and these include mean curvature,

unsphericity curvature (Figure 8), Gaussian curvature, and

curvature of flow lines. See Olaya (2009) for the details on

their computation and their potential significance in the Earth

sciences.

Other local-statistical parameters can also be used to

characterize key aspects of the surface. Relief and surface

roughness represent two important parameters valuable

in geomorphology. Local relief is highly correlated to slope,

although a nonlinear relationship has been found in extreme

mountain environments that can be useful for differentiating

process–form relationships, and the nature of the relationship

may be related to the magnitude of erosion and the rate of

relief production. It simply represents the range in the altitude
values over the spatial extent of the computational window.

It is important to note that relief is scale dependent, and

examining relief variation at different scales highlights differ-

ent aspects of the geomorphological system (i.e., tectonics at

larger scales). Similarly, surface roughness can be estimated in

a variety of ways. An interesting characterization makes use of

the vector approach such that

Xi ¼ sinðbÞ cosðfÞ, Yi ¼ sinðbÞ sinðfÞ, Zi ¼ cosðbÞ ½9�
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Figure 8 Unsphericity-curvature map generated from the 5 m LiDAR
DEM displayed in Figure 4. The unsphericity parameter highlights
land-surface conditions that are planar in nature.

Figure 9 Negative-openness map generated from the 5 m LiDAR
DEM displayed in Figure 4. A window search radius of 1 km was
used to highlight the scale-dependent hydrological network. This
parameter, when combined with other geomorphometric parameters,
can greatly facilitate the assessment of local and regional
hydrological conditions.
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where Xi, Yi, and Zi are the components of the unit vector

normal to the land surface. The surface-roughness factor (SRF)

can then be computed as

SRF¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
Pn

i XiÞ2 þ ð
Pn

i YiÞ2 þ ð
Pn

i ZiÞ2
q

n
½10�

where n is the number of cells in a window. Other approaches

to characterizing surface roughness include semivariogram

analysis and the use of the fractal dimension to characterize

terrain complexity. Terrain roughness has utility related to

weathering studies, estimating aerodynamic drag, and other

surface applications.

The regional (i.e., nonlocal) land-surface parameters are

mainly concerned with the climatic, geomorphic, hydrologic,

or visual properties of landscapes. The first category relies

on the accurate delineation of the shadowing, sky-view, and

terrain-view nature of the surrounding topography as it in-

fluences irradiance, temperature, and precipitation. The geo-

morphic and hydrological parameters focus on the movement

of water and sediment and, as such, rely on the accurate de-

lineation of flow paths, watersheds, and scale-dependent slope

and relief. The most common parameters are sediment flux,

upslope contributing area, flow-path length, and a variety

of statistical measures. For example, positive and negative

openness (Yokoyama et al., 2002) can be extremely valuable

to geomorphologists, as positive openness highlights areas of

extreme relief and has been used to discover active erosion

zones in the Himalaya (Bishop et al., 2010). Negative open-

ness (Figure 9) highlights the scale-dependent hydrological

network, and has potential for use in mapping valley bottoms

and hydrological modeling. For the final category, the visi-

bility (i.e., from what other points can a single point be seen
or the reverse, what other points can be seen from a single

point) can be calculated by drawing the line of sight from the

point of interest to all other points, and checking whether or

not the relief forms that occur between them block visibility.

From here, various measures of visual exposure, such as the

number of cells that can be seen from each cell, can be cal-

culated. See Fisher (1991, 1992, 1993, 1995, 1996) and Ruiz

(1997) for examples of these types of applications and some

of the pitfalls that should be avoided.

Last but not the least, the complex issue of scale as it relates

to representing and characterizing the topography must be

discussed. Unfortunately, key issues associated with conceptual

and practical treatments of scale have not been appropriately

addressed (Bishop et al., 2012). These issues are related to

measurement, cartographic, geographical, computational, and

operational scales, coupled with hierarchical organization, and

the anisotropic nature of the topography. First, the local terrain

shape, which is generally thought of as the continuous vari-

ation of the altitude field from point to point, has an enor-

mous impact on local and regional terrain parameters, but this

role is primarily influenced by cartographic and computational

scale. Florinsky (1998) suggested that local parameters, such as

slope gradient, slope azimuth, and curvatures, are mathemat-

ical variables rather than real-world characteristics. This state-

ment may be extended to all local terrain parameters for two

reasons. First, local terrain shape may rely on different math-

ematical descriptions, so that the local parameters calculated

depend on algorithm selection. Furthermore, the terrain shape

portrayed by DEMs is a function of cartographic scale, com-

bining the complexity of the terrain (geographic scale of fea-

tures), computational scale, and measurement scale at which

the terrain surface was sampled (e.g., Deng et al., 2008). Thus,

it is possible to use the same local parameter to describe terrain

shape at different scales (resolutions, distances, and dir-

ections). The special feature of nonlocal primary attributes is

that they rely on the terrain shape of a larger, non-neighbor

area (computational scale) and need to be defined with
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Figure 10 Second principal-component image representing
anisotropic slope information extracted from local slope data over the
Shimshal Valley in northern Pakistan. The slope data set was
generated from a Shuttle Radar Topographic Mission (SRTM) 3 arc-
second DEM. Spatial variation patterns are related to lithological units
and tectonics. Less resistant metasedimetary rocks in the
northeastern region and less precipitation generate a higher spatial-
frequency pattern, compared with a lower spatial-frequency pattern in
the southwestern region associated with more resistant lithologic
units, active uplift, and greater relief.
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reference to other nonlocal points. Therefore, calculation of

nonlocal attributes is more difficult because it incurs additional

efforts in constructing point to-point connections over the

landscape and involves more complex algorithms and scale

considerations (e.g., Desmet and Govers, 1996; Gallant and

Wilson, 2000).

Finally, the computation of geomorphometric parameters

does not usually account for a meaningful computational

scale corresponding to the geographic scale of landforms,

to the operational scale of surface processes, or to coupled

systems dynamics. This disconnect significantly affects the

magnitude and interpretation of a land-surface parameter,

such that it does not accurately characterize the topography, as

governed by theory and practical utility. Such spatial con-

straint problems of computational scale are related to surface

materials and the hierarchical organization of the topography,

where hierarchically organized landforms and features effect-

ively represent complex topographic patterns. Such scale

dependencies and organizational structure have yet to be

formally addressed, and are rarely accounted for by many

land-surface parameters. The partial exception to this is basic

semivariogram analysis, as it effectively accounts for spatial

complexity, although a spatial limit based on hierarchical

structure has yet to be rigorously evaluated. Furthermore, the

anisotropic nature of the topography at a multitude of dis-

tances must also be accounted for. This is demonstrated at the

local level using slope computed from the eight directions

within a 3� 3 window. Principal component analysis of

the entire slope data set reveals fundamentally important

anisotropic information that can be used to highlight topo-

graphic structure related to surface processes, lithology, and

tectonics (Figure 10). The second principal component image

highlights the local basin structure, such that many spatial
Table 2 Select list of primary and secondary land-surface parameters and

Parameters Type Significance

Elevation Local Climate, vegetation, potential e
Slope Local Precipitation, overland and sub
Slope azimuth Local Flow direction, solar insolation
Profile curvature Local Flow acceleration and decelera
Tangential curvature Local Local flow convergence and d
Roughness Local Terrain complexity
Elevation percentile Local Relative landscape position, flo
Flow width Local Flow velocity, runoff rate, and
Upslope contributing area Regional Runoff volume, soil water con
Flow-path length Regional Runoff volume, soil water con
Upslope height, elevation-

relief ratio, hypsometric
curve, etc.

Regional Distribution of height values, p

Mean slope of upslope area Regional Runoff velocity and possibly o
Mean slope of dispersal area Regional Rate of soil drainage
Visual exposure Regional Exposure, solar insolation, win
Topographic wetness index Regional Spatial distribution and extent o

a function of upslope contrib
Stream-power index Regional Erosive power of flowing water

catchment area)

Source: Modified from Wilson, J.P., Gallant, J.C., 2000a. Digital terrain analysis. In: Wilson,

Sons, New York, pp. 1–27, and Olaya, V., 2009. Basic land-surface parameters. In: Hengl,

Amsterdam, pp. 141–169.
characteristics can be used for geomorphological mapping and

system characterization. This aspect of scale is very important

in geomorphology, as it may improve the ability to assess

new aspects of geomorphological systems. Another example

at a larger computation scale is presented by Koons et al.

(2012), as they reveal that rock strength may be related to the

anisotropic nature of scale-dependent relief. Land-surface

parameters and objects that characterize operational scales

and structural constraints are urgently needed, and may aid in

establishing new theories about landscape evolution. Table 2

lists the most commonly used primary land-surface par-

ameters and their significance.
their significance

nergy
surface flow velocity and runoff rate, soil-water content
, evapotranspiration, flora and fauna distribution and abundance
tion, soil erosion and deposition rates
ivergence

ra and fauna distribution and abundance
sediment load
tent, soil redistribution
tent, soil redistribution
otential energy, flow characteristics

ther flow characteristics

d patterns
f zones of saturation (i.e., variable source areas) for runoff generation as
uting area, soil transmissivity, and slope
(based on the assumption that discharge is proportional to the specific

J.P., Gallant, J.C. (Eds.), Terrain Analysis: Principles and Applications. John Wiley and

T., Reuter, H.I. (Eds.), Geomorphometry: Concepts, Software, Applications. Elsevier,
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3.7.3.2 Secondary Land-Surface Parameters

In general, there are two basic sets of secondary land-surface

parameters. The first is for hydrologic characterization related to

quantifying water flow and related surface processes, and the

second is a series of climatology parameters that are related to

multiscale topographic influences on radiation, temperature, and

precipitation. Collectively, these parameters attempt to quantify

the interactions between the atmosphere and surface processes.

The underlying theory for both is well established, and the

parameterization schemes and computational methods have

evolved continuously over the past 20 years.
2
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N

0 300 600

(m)

Figure 11 Gridded contributing area (ha) map derived from the
Cottonwood Creek, Montana DEM, using the D8 single flow direction
algorithm, with the catchment boundary overlaid. Reproduced from
Wilson, J.P., Gallant, J.C., 2000b. Secondary topographic attributes.
In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis: Principles and
Applications. John Wiley and Sons, New York, pp. 51–85.
3.7.3.2.1 Hydrology
The movement of water is primarily driven by gravity and, to

some degree, modified by the properties of the material it

flows through or over (Gruber and Peckham, 2009). The effect

of gravity can be approximated easily with a DEM, but the

surface and subsurface properties and conditions are cum-

bersome to describe and treat. There are steadily improving

regional and national databases describing the spatial vari-

ability of selected land-surface and soil characteristics (e.g.,

Miller and White, 1998; Feng et al., 2009), but these have a

much coarser resolution than the authors’ DEMs, and seldom

include the various properties needed for specific applications.

The typical approach relies on a series of parameter estimation

equations (e.g., Rawls, 1983; Saxton et al., 1986; Abdulla and

Lettenmier, 1997; Homann et al., 1998; Waltman et al., 2003;

Saxton and Rawls, 2006), although these will undoubtedly

introduce some additional uncertainty and error into the

analytical workflow or modeling application at hand (e.g.,

Band, 1993; Wilson et al., 1996; Zhu and Mackay, 2001;

Quinn et al., 2005). Given this state of affairs, it can be as-

sumed that the DEM-based parameters will do better where

the relative importance of gravity is greatest (i.e., in headwater

areas and on steep slopes).

The initial development and use of flow-based land-surface

parameters can be traced to the introduction of the D8 algo-

rithm (O’Callaghan and Mark, 1984). This is now but one of

more than a dozen flow-routing algorithms, however, and

a distinction is usually drawn between single- and multiple-

flow direction algorithms. The single flow-routing algorithms,

which direct flow to just one downslope or neighboring cell,

include the Rho8 (Fairfield and Leymarie, 1991) and aspect-

driven kinematic routing (Lea, 1992) algorithms in addition

to the D8 algorithm. The multiple flow-routing algorithms,

which are capable of directing flow to two or more downslope

or neighboring cells, include the FD8 (Freeman, 1991), TOP-

MODEL (Quinn et al., 1991, 1995), DEMON (Costa-Cabral

and Burges, 1994), DN (Tarboton, 1997), and Mass-Flux

algorithms (Gruber and Peckham, 2009). These flow-routing

algorithms will generally generate very different results

(Figures 11 and 12).

The performance of many of these flow-routing algorithms

has been compared across a variety of landscapes (e.g., Wolock

and McCabe, 1995; Desmet and Govers, 1996; Zhou and Liu,

2002; Endreny and Wood, 2003; Chirico et al., 2005; Wilson

et al., 2000, 2007). Wilson et al. (2008) recently evaluated

the performance of several algorithms including ANSWERS

(Beasley and Huggins, 1978), D8 (O’Callaghan and
Mark, 1984), Rho8 (Fairfield and Leymarie, 1991), FD8/

TOPMODEL (Freeman, 1991; Quinn et al., 1991, 1995), an

aspect-driven kinematic routing algorithm (Lea, 1992),

DEMON (Costa-Cabral and Burges, 1994), a flow de-

composition algorithm (Desmet and Govers, 1996), DN

(Tarboton, 1997), and MFD-md (Qin et al., 2007). They

showed that various algorithms can be expected to generate

different patterns of flow (based on upslope contributing

areas) on different parts of a hill slope or a watershed. The

gridded contributing area map reproduced in Figure 11 shows

how the D8 algorithm often generates many parallel flow

lines, which of course do not match the dendritic patterns that

characterize most surface and channel flow systems, whereas

the DEMON algorithm (Figure 12) produces more realistic

patterns, but is computationally slow when used with large

DEMs and prone to failure in flat areas. The final choice of the

flow-routing algorithm should aim to minimize the most

important of these tradeoffs for the particular study area and

application at hand.

Notwithstanding the presence of these kinds of tradeoffs, the

multiple flow-routing algorithms have grown in popularity over

time. The fundamental goal with this class of algorithms is to

find a method or a sequence of methods that move water into

one or more downslope cells, and Gruber and Peckham (2009)
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Figure 12 Gridded contributing area (ha) map derived from the
Cottonwood Creek, Montana DEM, using the DEMON stream-tube
algorithm, with the catchment boundary overlaid. Reproduced from
Wilson, J.P., Gallant, J.C., 2000b. Secondary topographic attributes.
In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis: Principles and
Applications. John Wiley and Sons, New York, pp. 51–85.
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have noted how this approach might be justified by actual di-

vergence (i.e., the need to treat flows across convergent and

divergent land surfaces) and/or the attempt to overcome the

limits of having only eight adjacent cells (i.e., methods to

overcome the limitations generated when a continuous flow

field is represented with a regular grid that has only eight pos-

sible directions in multiples of 451).

This pair of explanations helps to explain why the final

choice of a flow-routing method for a specific application will be

a compromise. The single flow-direction algorithms can-

not represent divergent flow, but for the same reason, have no

problem with overdispersal (i.e., the dispersal of the available

flow over too many cells or too large an area). The multiple

flow-direction algorithms, however, can represent divergent flow,

but usually also suffer from some overdispersal. In addition, the

subtleties and outcomes of the methods are concerned with the

need to: (1) treat ambiguous flow directions (as for example

occurs along ridgelines or saddles and across flat plains or valley

bottoms); and (2) reconcile the DEM-delineated flow lines and

the drainage lines acquired from some other source that are also

likely to influence the results generated with these different flow-

routing algorithms.

Therefore, the flow directions are generally computed to cal-

culate upslope contributing areas (i.e., flow accumulation areas)
and delineate the drainage networks along with the basin

boundaries. See Band (1986, 1989), Montgomery and Dietrich

(1989, 1992) and Peckham (1998) for examples of methods for

delineating drainage networks with single flow-direction algo-

rithms. The topographic wetness and stream-power indices are

among the most popular of various stream attributes, and unlike

the catchment (basin) boundaries and some other attributes, this

pair of attributes can be calculated with both the single and the

multiple flow-direction algorithms.

The typical form of the topographic wetness index (TWI)

assumes steady-state conditions and describes the spatial distri-

bution and extent of zones of saturation (i.e., variable source

areas for runoff generation) as a function of upslope contributing

area Ac, slope, and occasionally soil transmissivity (this last term

is often excluded because the transmissivity is assumed to be

constant throughout the catchment), such that

TWI¼ ln
Ac

tanb

� �
½11�

The steady-state form of the TWI predicts zones of saturation

where the specific catchment area is large (which typically occurs

in converging areas of the landscape), the slope is small (which

typically occurs at the base of concave slopes), and soil trans-

missivity is low (which is often characteristic of areas with

shallow soils). This index has been used successfully in a variety

of hydrological applications because the aforementioned con-

ditions are commonly encountered along drainage paths and in

zones of water concentration in many landscapes (e.g., Beven

and Kirkby, 1979; Burt and Butcher, 1985; Moore and Burch,

1986; O’Loughlin, 1986; Sivapalan et al., 1987; Moore et al.,

1988; Phillips, 1990; Montgomery and Dietrich, 1994; Moore

and Wilson, 1992, 1994; Fried et al., 2000; Kheir et al., 2007).

These types of static indices, however, must be used care-

fully to predict the distribution of dynamic phenomena like

soil-water content because surface saturation is a threshold

process, the presence of hysteric effects, and the reliance

on one or more assumptions. The two most important as-

sumptions in this case are that: (1) the gradient of the

piezometric head, which governs the direction of subsurface

flow, is parallel to the land surface; and (2) there is

sufficient time between rainstorms for the subsurface flow to

achieve a steady state (Moore et al., 1993a). Several authors

have described the pitfalls of using these kinds of indices in

inappropriate ways. For example, Jones (1986, 1987) docu-

mented some of the advantages and limitations of using

wetness indices to describe the spatial patterns of soil-water

content and drainage, and Quinn et al. (1995) summarized

the various problems and described how the steady-state TWI

can be calculated and used effectively as part of the TOP-

MODEL hydrologic-modeling framework. Several variants

of the original equation have also been proposed. Barling

(1992) proposed a quasi-dynamic topographic wetness index

(QD-TWI) to overcome the limitations of the steady-state

assumption and used it to show how the topographic

hollows, and not the drainage channels themselves, deter-

mined the response of a semiarid catchment in New South

Wales, Australia (see Barling et al. (1994) for additional de-

tails). Wood et al. (1997) later proposed an alternative index

to predict the saturated-zone thickness that incorporated both
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spatial and temporal variation in recharge. Both Fried et al.

(2000) and Nguyen and Wilson (2010) calculated QD-TWI

using a variety of flow-routing algorithms and showed how

the results varied depending on the flow-routing algorithm

that was utilized.

3.7.3.2.2 Climatology
The topography also governs microclimate, and surface-energy

conditions influence the magnitude of various surface pro-

cesses. Böhner and Antonić (2009) reviewed topoclimatology

parameters, as the land surface controls the spatial variability

of near-ground atmospheric processes and meso-scale climatic

variations. The regionalization approaches that use kriging,

universal kriging, and splines to map the climate variables

measured at climate stations are ignored, and the focus is on

the land-surface parameters that are used to assess the vari-

ability of the short- and long-wave radiation fluxes, as these

influence surface temperature, evapotranspiration, air move-

ment, and other surface processes.

Understanding and predicting the magnitude of solar and

surface irradiance is of primary concern. Solar irradiance varies

as a function of: (1) the changing distance from the Sun to the

Earth; (2) intrinsic variation in the output of the Sun; and (3)

changes in the radiation field from the Sun toward the Earth.

Annual changes in irradiance can be B6%, independent

of wavelength. A nonuniform distribution of active regions

also occurs on the solar disk that are modulated by a 27-day

rotation period, which results in irradiance variations that are

wavelength (l) dependent. Irradiance variations are also

caused by solar magnetic activity (22-year cycle). These vari-

ations are caused by eruptive phenomena such as flares, and

range in temporal scale from minutes, to months, to years,

and include the 11-year sunspot cycle.

The exo-atmospheric irradiance, E0, is therefore a function

of orbital parameters that determine its magnitude. Most GIS-

based solar-radiation models do not account for orbital-

parameter variation of obliquity and eccentricity; therefore,

they cannot be used effectively for paleo-climate and future-

scenario studies too far into the past or future. For example,

such models cannot be used to study radiative forcing in the

Holocene. Rather, such models make use of standard irradi-

ance spectra and account for the annual variation in the

Earth–Sun distance to portray seasonal and diurnal variations

in E0.

Atmospheric conditions then determine the amount

of atmospheric attenuation, and atmospheric-transmission

functions are wavelength dependent. Atmospheric conditions

are generally prescribed based on modeled atmospheric con-

ditions. For solar-radiation modeling and estimation of sur-

face-process rates, there is a need to accurately estimate the

surface spectral irradiance (E) which is a composite of three

downward irradiance components

EðlÞ ¼ EbðlÞ þ EdðlÞ þ EtðlÞ ½12�

The direct/beam irradiance (Eb) is typically dominant,

followed by the diffuse-skylight irradiance (Ed) and the

adjacent terrain irradiance (Et). Variations in atmospheric,

topographic, and land-cover conditions determine the se-

quential dominance of irradiance partitioning.
Under cloudless skies, Eb is the dominant term in eqn [12].

Consequently, considerable research has focused on modeling

the direct atmospheric-transmittance functions accurately.

The atmosphere attenuates the direct irradiance primarily by

gaseous absorption and molecular and aerosol scattering

(Chavez, 1996). These atmospheric processes are wavelength

dependent, and spatially and temporally controlled by chan-

ging atmospheric and landscape conditions. The total down-

ward atmospheric transmission (Tk) is a function of the total

optical depth of the atmosphere, which varies with solar-

zenith angle and altitude, and can be represented as

Tk ðlÞ ¼ TrðlÞTaðlÞTO3
ðlÞTgasðlÞTH2OðlÞ ½13�

where Tr is the Rayleigh transmittance, Ta is the aerosol

transmittance, TO3
is the ozone transmittance, Tgas is the

transmittance for miscellaneous well-mixed gases, and TH2O is

the water-vapor transmittance. Atmospheric attenuation is

highly variable with wavelength, with Rayleigh and aerosol

scattering dominating at shorter wavelengths and water vapor

dominating at longer wavelengths.

The direct irradiance is also governed by multiscale topo-

graphic parameters. Local or microscale topographic variation

is represented by the incidence angle of illumination between

the Sun and the vector normal to the ground, such that

cos i¼ cosyicosbþ sinyisinb cosðf� fiÞ ½14�

where yi is the incident solar-zenith angle and fi is the inci-

dent solar-azimuth angle.

It is possible to estimate cos i using a DEM, and uncertainty

in the estimate is related to the resolution, as subpixel-scale

topographic variation is not accounted for. Values of cos i can

be r0.0, indicating no direct irradiance due to the orientation

of the topography. It is important to note that the incident

solar geometry varies across the landscape, although this is

usually assumed to be constant when working with image

scenes (i.e., small-angle approximation). In addition, the

meso-scale topographic relief in the direction of fi determines

whether a pixel is in shadow (Sc). This can be accounted for by

ray tracing, shadow detection, and shadow interpolation al-

gorithms that alter cos i values appropriately (Dozier et al.,

1981; Rossi et al., 1994; Giles, 2001). The local and meso-scale

topographic influences on the direct irradiance are significant

over annual and diurnal time scales (Figure 13). Con-

sequently, direct irradiance exhibits a high degree of spatio-

temporal variability. The direct irradiance component can be

estimated as

EbðlÞ ¼ E0ðlÞTk ðlÞcos iSc ½15�

Atmospheric scattering also generates a hemispherical

source of irradiance that should be calculated as an integration

of the total sky irradiance. This source can be simplistically

represented as a composite of a Rayleigh-scattered component

(Er), an aerosol-scattered component (Ea), and the ground-

backscattered component (Eg) that represent inter-reflections

between the land surface and the atmosphere, where

EdðlÞ ¼ ErðlÞ þ EaðlÞ þ EgðlÞ ½16�



(a) (b)

(c) (d)

Figure 13 Simulated topographic influences on the direct irradiance (cos iSc) over the Mt. Everest region in Nepal. Darker tones represent less
direct irradiance whereas light tones represent greater direct irradiance. Simulations based on an Advanced Spaceborne Thermal Emission and
Reflectance Radiometer Global Digital Elevation Model of the region. Simulations account for local topographic conditions including slope and slope
azimuth, as well as meso-scale topographic shielding that casts shadows. The solar azimuth was held constant at 135.01: (a) Simulation with a
solar-zenith angle of 0.01; (b) Simulation with a solar-zenith angle of 45.01; (c) Simulation with a solar-zenith angle of 70.01; and (d) Simulation with
a solar-zenith angle of 85.01. Assuming relatively constant atmospheric conditions, direct irradiance in this region exhibits a high degree of
spatiotemporal variability.

176 Geomorphometry

Author's personal copy
Its accurate estimation is complicated by the fact that an

anisotropic parameterization scheme is required. In general,

the irradiance decreases with angular distance from the Sun.

In addition, this irradiance component is also influenced

by meso-scale hemispherical shielding of the topography.

Consequently, only a solid angle of the sky will contribute

to Ed, and this angle will change as a function of pixel location
and direction. In general, the solid angle will increase with

altitude. It is frequently referred to as the sky-view factor (Vf )

in the remote-sensing and energy-balance literature, and can

be estimated using a DEM (Figure 14) such that

Vf ¼
X360

f ¼ 0

cos2 ymaxðf,dÞ Df
360

½17�
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Figure 14 Sky-view factor over northern Pakistan. This parameter
was computed from a Shuttle Radar Topographic Mission (SRTM)
3 arc-second DEM. Darker tones represent those areas that do not
receive as much diffuse-skylight irradiance, whereas lighter tone
areas receive more. The spatial patterns reveal that meso-scale relief
conditions are highly variable in the Himalaya. Examination of the
magnitude and spatial patterns reveals that some glaciers are
receiving more diffuse-skylight irradiance than others, whereas
different glaciers exhibit different trends in their sky-view-factor
altitude profile. Such topographic variation regulates ablation rates
and governs the sensitivity of glacier response to climate forcing.
This is turn regulates melt-water production and glacial and fluvial
erosion.
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where ymax is the maximum local horizon angle at a given

azimuth, f, over a radial distance of d.

In mountain environments exhibiting extreme relief and

deep valleys, topographic shielding of the skylight-diffuse ir-

radiance can be significant (Proy et al., 1989). Furthermore,

difficulties in accurately predicting the bidirectional reflect-

ance distribution function (BRDF) of land-cover character-

istics surrounding individual pixels generate uncertainty in the

estimation of the ground-backscattered component.

The irradiance components Eb and Ed interact with the

terrain and land-cover biophysical characteristics to generate

an adjacent-terrain irradiance component. This irradiance

component is not generally considered in remote-sensing,

GIS-based radiation modeling, and energy-balance studies be-

cause it is assumed that its magnitude is relatively minor, and it

is a difficult parameter to estimate accurately. A first-order ap-

proximation has been formulated by Proy et al. (1989) and

assumes that surface radiance is Lambertian. It is then possible

to estimate the radiance received at any pixel, by accounting for

the geometry between two pixels (p1 and p2) such that

L12 ¼ cosy1 L2cosy2
Ap

d2

� �� �
½18�

where L12 represents the radiance received at p1 from the lu-

minance of p2 (L2), y1 and y2 are the angles between the

normal to the terrain and the direct line of sight from p1–p2,

Ap is the pixel area (p2), and d represents the distance between

p1 and p2.

This equation can be used to estimate Et for any pixel by

integrating over all of the pixels whose slopes are oriented

toward a pixel of interest and where the line of sight is not

blocked by the topography. High-altitude and extreme local
relief areas can exhibit a strong adjacent-terrain irradiance

component due to highly reflective features such as snow and

vegetation.

The magnitude of the reflected and emitted radiance at the

surface is determined by the conservation of energy, such that

rðlÞ þ aaðlÞ þ TðlÞ ¼ 1:0 ½19�

where, r, aa, and T represent the reflectance, absorption, and

transmission, respectively. For opaque objects, T¼0.0. It is

commonly assumed that reflectance is isotropic (surface re-

flects radiation equally in all directions) and the surface

spectral radiance (L) can be computed as follows

LðlÞ ¼ rðlÞ EðlÞ
p

� �
½20�

The Lambert assumption, however, is not an accurate

characterization of the anisotropic nature of surface reflection.

The BRDF describes such reflectance variations and can be

used to estimate the surface albedo, a key parameter in surface

energy-budget modeling needed to compute the net short-

wave radiant flux. Several parameterization schemes exist for

the long-wave irradiance and net long-wave radiant flux, and

other surface energy-budget components are also dependent

on topographic parameters including surface roughness.

Several GIS-based solar-radiation models and surface en-

ergy-budget models can be used to produce maps of various

surface irradiance and energy parameters. Such models can be

used over user-specified periods ranging from 1 day to a year

in length. SRAD (Moore et al., 1993b; Wilson and Gallant,

2000b) is but one of a number of models that have been

proposed for calculating the radiation fluxes and it incorpor-

ates the effects of cloudiness into the calculations. Others in-

clude r.sun (Hofierka, 1997), Solar Analyst (Fu and Rich,

2000), Solar Flux (Dubyah and Rich, 1995; Hetrick et al.,

1993a, b), and Solei (Mészároš, 1998; Miklánek, 1993). All

the aforementioned models document how spatial variability

in elevation, slope, slope azimuth, cast shadows, sky-view

factor, and other variables can create very strong local gradi-

ents in solar radiation and surface temperature, and thereby

exert a large influence on surface processes including photo-

synthesis, evapotranspiration, ablation, weathering, as well as

influencing vegetation diversity and biomass production at

specific locations on the land surface.

Analysis of the topography is also required for the char-

acterization of precipitation, air flow, and wind speed, as

rainfall is governed by local slopes and meso-scale altitude

variations, and air-flow direction and speed is governed by

regional relief structure, deformation orientation patterns, and

local and meso-scale surface roughness. For more details, see

Böhner and Antonić (2009).

Finally, it is important to note that it is difficult to verify

some parameter estimates because it is not easy to accurately

measure the spatio-temporal variability of key variables (e.g.,

albedo, BRDF, Et). Furthermore, climate stations are not gen-

erally established in complex terrain, but occur in low-altitude

areas in flat terrain, and may not collect data representative

of higher-altitude areas or more complex topography. One

possible way around this problem is to use satellite data for
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estimating incoming solar radiation and precipitation. Con-

sequently, there is a need to develop and validate new para-

meterization schemes that address process mechanics and the

space–time issues connected to data, analysis, and modeling.

Table 2 also lists the most frequently used secondary land-

surface parameters and their significance.
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Figure 15 The modified Dikau (1989) classification of form
elements based on the profile and tangential (i.e., across slope)
curvatures. The elements have been further classified as positive or
negative based on the radius of curvatures (4600 or o600 m) and
the planform curvature in the original classification was replaced by
tangential curvature based on Shary and Stepanov (1991).
Reproduced from MacMillan, R.A., Shary, P.A., 2009. Landforms and
landform elements in geomorphometry. In: Hengl, T., Reuter, H.I.
(Eds.), Geomorphometry: Concepts, Software, Applications. Elsevier,
Amsterdam, pp. 227–254.
3.7.4 Land-Surface Objects and Landforms

The use of land-surface parameters to segment the landscape

into terrain features or landform classes (i.e., objects) can be

traced to the pioneering work of Speight (1968) and Dikau

(1989). Recent developments have included the use of

automated fuzzy-classification algorithms to detect landform

elements (e.g., Burrough et al., 2000a; Schmidt and Hewitt,

2004). The focus of these kinds of applications may range

from the identification of specific landforms (e.g., mountains,

valleys, glaciers, alluvial fans) to landform elements (i.e.,

geometric shapes that constitute part or all of a specific

landform) and repeating landforms types (e.g., a series of

rolling hills and valleys). Here, the focus is on the extraction

and classification of landform elements, since these constitute

the basic building blocks for segmenting the landscape into

landform classes.

The early landform classification approaches relied on

various representations of landscape position and the shape of

the land surface itself. For example, Dikau (1989) divided the

landscape into combinations of concave, straight, and convex

planform curvatures, on the one hand, and concave, straight,

and convex profile curvatures on the other. This approach (like

many subsequent ones) relies on the inferred relationship

between surface shape (i.e., local curvature) and the accumu-

lation of surface flow and consequently that of surface de-

position through two accumulation mechanisms. The first

mechanism reflects the divergence and convergence of flow

across a hill slope, whereas the second reflects the relative

deceleration of flow in the downslope direction, as influenced

by changes in profile curvature (Moore et al., 1991; MacMillan

and Shary, 2009).

Shary and his colleagues have criticized Dikaus’ (1989)

original approach on two levels, and proposed a more robust

and predictable classification based on curvatures. Their first

suggestion was to use tangential curvature in place of plan-

form curvature in the classification of basic form elements

(Figure 15), because both tangential and profile curvatures are

curvatures of normal sections and both exhibit similar stat-

istical distributions, unlike planform curvature (MacMillan

and Shary, 2009). The second criticism concerned the con-

tradiction in Dikau’s (1989) original premise that this ap-

proach differentiated form elements with a homogeneous

plan and profile curvature, because these facets invariably

contain even more homogeneous form facets with similar

gradients, aspects, and curvatures. Shary (1995) and Shary

et al. (2005), in turn, have proposed an objective, local, scale-

specific classification of elemental landform features based

only on the consideration of the signs of the tangential, pro-

file, mean, difference, and total Guassian curvatures, as a way

of avoiding both of these sets of problems (Figure 16).
None of the aforementioned approaches, however, in-

corporates the contextual position of specific facets that make

up the landscape. Most of the automated classifications that

incorporate context build on the conceptual classifications of

hillslopes like those of Ruhe (1960), which divided hill slopes

into five units (summits, shoulders, back slopes, foot slopes,

and toe slopes). Many other such classifications have been

proposed, and Conacher and Dalrymple (1977) and Speight

(1990) divided hill slopes into 9 and 10 units, respectively.

This was accomplished by delineating finer-resolution hill

slope facets or by extending the hill slope to include the

channel or various parts of the channel at the bottom of the

hill slope. Taken as a whole, these conceptual classes consider

slope gradient and relative-slope position along a topo-

sequence from divide to channel. In addition to curvatures

and automated classification, various approaches have in-

cluded absolute and relative horizontal and vertical distance

to ridge lines or channels (e.g., Skidmore et al., 1991) and

position in the landscape relative to the order of the nearest

stream channel below a hillslope (e.g., Schmidt et al., 1998;

Schmidt and Dikau, 1999).

The adoption and use of fuzzy-classification algorithms to

detect landform elements marked an important step forward.

The importance of this innovation can be traced to the fact

that each of the aforementioned approaches will work in

some instances and not others, and they will seldom produce

satisfactory answers to questions linked to the locations of

a specific mountain or valley (Fisher et al., 2004). Indeed,

there are many phenomena that are difficult to locate or de-

lineate because their meaning is not well defined or because of

the subjectivity, vagueness, and ambiguity that have often

characterized the ways in which the world is described
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Figure 16 Shary’s complete system of classification of landform elements based on signs of tangential, profile, mean, difference, and total
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(Burrough, 1996; Wilson and Burrough, 1999). Fuzzy-set

theory represents an alternative approach to classic set theory

(Burrough and McDonnell, 1998; Robinson, 2003) and has

been used in many environmental domains to solve these

kinds of problems. Hence, one or more forms of fuzzy clas-

sification have been used to describe soil variability (e.g.,

McBratney and Odeh, 1997; Zhu, 1997a, b, 1999; Ahn et al.,

1999), land cover (e.g., Fisher and Pathirana, 1994; Foody,

1996, Brown, 1998; DeBruin, 2000), site selection and mul-

ticriteria evaluation (Charnpratheep et al., 1997; Jiang and

Eastman, 2000), and the parameterization of land-surface

models (e.g., Mackay et al., 2003).

The above mentioned examples indicate how many

authors have used fuzzy sets and fuzzy-logic operators with

land-surface parameters to generate partial and multiple

memberships of spatial objects of various kinds during the past

15 years. The various membership functions that have been

described in considerable detail by Robinson (2003) represent

the core of the method because they allow the expression

of irreducible observation and measurement uncertainties in

their various manifestations, and make these uncertainties in-

trinsic to the classification (i.e., using grades of membership).

In this way, the fuzzy-logic approach will associate a fuzzy

likelihood of each output class with each value or class on each

input map (Figure 17). This means that when fuzzy data are

processed, their intrinsic uncertainties are processed as well,

and their results are more meaningful than their counterparts

obtained by processing the usual crisp data (Klir and Yuan,

1995; Robinson, 2003). The advantages of using such an

approach are evident in the landform elements specified by

MacMillan et al. (2000) on the basis of a combination of

measures of local-surface shape (convexity/concavity) plus

the relative-slope position for a 64 ha site in Alberta, Canada.
Two basic fuzzy-set approaches exist. The first relies on

expert knowledge and is often referred to as the Semantic-

Import model, whereas the second approach relies on the

identification and characterization of feature-space clusters

(e.g., Bezdek et al., 1984). The fuzzy sets generated in both of

these instances will often provide tremendous expressive

power (Robinson, 2003). For example, Zhu (1997a, b, 1999)

work clearly demonstrates the utility of the fuzzy paradigm for

capturing and representing spatially explicit soils knowledge

from human experts. Zhu and his colleagues used knowledge

of observable environmental inputs including several land-

surface parameters, and targeted outputs (soil-map units), and

adopted a limiting-factor approach for computing the overall

similarity. The value for the overall similarity between an

unclassified entity and a reference entity was obtained by

simply selecting the smallest similarity value from among all

similarity values computed for all attributes for an unclassified

entity in this application.

Both the expert- and data-driven fuzzy-classification ap-

proaches will result in multiple maps of membership, where

each class will be represented on a separate map. The advan-

tages of using memberships are threefold since it is possible

to: (1) determine which classes are connected with which

land-surface parameters; (2) assess the confusion between

the classes; and thereby (3) detect the areas where the con-

fusion between two or more classes is high (Burrough and

McDonnell, 1998; Hengl et al., 2004; Shi et al., 2005; Evans

et al., 2009).

There are many subtleties, however, connected to these

fuzzy-classification methods. The knowledge in the afore-

mentioned approach could have been acquired via several

methods, and each would have varied in the degree to which it

is theoretically, empirically, or statistically valid. See Qi and
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Zhu (2003), Qi (2004), and Qi et al. (2006) for an extended

discussion of these issues. Similarly, the results can be ex-

pected to vary with the method used to compute the overall

similarity scores. MacMillan et al. (2000), in their imple-

mentation of the Semantic-Import model, relied on a weigh-

ted-average method to calculate the overall similarity of an

unclassified site to a reference entity, based on the assumption

that all input variables should be included in calculating the

similarity of a site to a reference entity. However, a case can

also be made, that some inputs may deserve to be afforded

a greater importance or weight than others (Hengl and

MacMillan, 2009). Indeed, the sensitivity of the fuzzy c-means

approach to the choice of input variables and weights assigned

to them when calculating the overall similarity values has

been explored extensively (e.g., Deng et al., 2006; Deng and

Wilson, 2006).

There is also the need to choose an appropriate scale for

both the Semantic-Import model and the fuzzy c-means fuzzy-

classification approaches. The fact that there is no single true

or fixed value for local land-surface parameters such as slope

or curvature at a point, but rather a whole range of values that

are dependent on the horizontal and vertical resolution has

already been noted. Not unexpectedly, no best resolution

can be singled out at which to compute local land-surface

parameters to portray and classify terrain (Hengl, 2006; Smith

et al., 2006; Deng et al., 2007), and the final scale that is

chosen should be appropriate for capturing and describing the

surface features of interest for a particular application (Deng

et al., 2008). The size or the extent of the study area needs to

be added to this list of sensitive variables since some land-

surface parameters will vary in systematic ways across the

landscape, and may generate locally specific results when the

fuzzy classification is implemented for a limited area (Evans

et al., 2009).

The aforementioned discussion gives some sense of the

great progress that has been made with automated landform

classification during the past quarter century. The successful

deployment of these techniques, however, requires consider-

able knowledge and experience with the techniques them-

selves, and of the study area to which they are to be applied.

Furthermore, the generation of land-surface objects requires

better formalization that links process and form. Addressing
various issues associated with the formal characterization of

topographic structure and the use of object-oriented technol-

ogy also has the potential to lead to significant progress. Un-

fortunately, new representational schemes and the use of

Earth-science concepts in analysis and modeling have not kept

pace with empirical exploration (Bishop et al., 2012). Both are

required for formalizing the generation of land-surface objects

that will facilitate diagnostic geomorphological mapping

efforts.
3.7.5 Conclusions

There have been tremendous advances in DEM data sources,

digital terrain modeling techniques, new algorithms for land-

surface parameterization, and new geomorphological appli-

cations driven by geomorphometry. Nevertheless, new theo-

retical/conceptual and information technology advances must

also occur that formalize the understanding of geomorpho-

logical systems and topographic complexity. There are at least

four research paths that can be expected to yield substantial

benefits.

1. Knowledge of the presence of, and propagation of, errors in

both the current and the new remote-sensing data sources

that emerge needs to be improved. This is a challenging

task because many of the systematic and random errors in

the current data streams are specific to the sensor used and

the specific protocols and methods that have been used in

individual projects (Dowman, 2004). This suggests that

ways to clarify and publish information related to data

quality need to be established, since much of this is pro-

prietary information of firms that have built and deployed

the aforementioned technologies.

2. Field observations and the development and testing of new

analytical methods are required. Taking the modeling of

flow directions and upslope contributing areas as ex-

amples, there is an urgent need to learn more about the

ways in which the land surface and the interactions with

the underlying soil and regolith influence rainfall–runoff

relationships and the growth and contraction of flow

networks in specific environments. Lindsay and colleagues
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at the University of Guelph in Ontario, Canada, for

example, are exploring the spatial pattern and timing of

ephemeral flows in headwater channels that may provide

some important new insights. These kinds of projects are

time-consuming, but are vital for the development of DEM

datasets and analytical methods that support the represen-

tation of the key hydrologic and geomorphic processes

(i.e., those influencing nonpoint source pollution) oper-

ating in specific landscapes (e.g., Mitášová et al., 1995).

3. The critical evaluation and adoption of key algorithms and

best approaches for solving specific problems is required. This

is similar to the second path, although it is likely to yield

faster returns. The goal here would be to combine and inte-

grate ‘best’ practices, as exemplified by the following example.

The QD-TWI model proposed by Barling (1992) would ap-

pear to have considerable merit, given what is known about

the distribution of soil moisture along with both the surface

and subsurface flow patterns in a variety of semiarid and arid

landscapes. The original QD-TWI model, however, in-

corporated the D8 flow-routing algorithm, and several studies

have demonstrated that D8 generates many undesirable ar-

tifacts. The DEMON flow-routing algorithm, however, offers

many advantages but sometimes fails in areas with flat ter-

rain, and shows slow performance when applied to relatively

fine-resolution DEMs covering large areas. Nguyen (2011) has

exploited this opportunity by building a faster and more ro-

bust version of DEMON along with a flexible version of the

QD-TWI model that allows the user to choose from a variety

of flow-routing algorithms. Consequently, a terrain analyst

can work with both approaches simultaneously. There are

many opportunities like this that can be exploited in the

immediate future.

4. The final research path concerns issues of scale. The rapid

advent and adoption of fine-resolution remote-sensing

data sources, and the need to characterize coupled geo-

morphological systems, means that there is an urgent need

to address multiple issues of scale that affect the ability to:

(1) collect, represent, and integrate data and information

across multiple scales; (2) characterize land-surface par-

ameters; (3) generate meaningful land-surface objects that

are based on scientific principles and concepts; and (4)

develop and refine techniques that allow multiscale char-

acterization and visualization to address a variety of

problems. These topics have been recognized by a variety of

researchers as key agendas (Gallant et al., 2000; Gallant

and Dowling, 2003; Sulebak and Hjelle, 2003; Fisher et al.,

2005; Deng, 2007; Deng and Wilson, 2008; Bishop et al.,

2012).

Finally, various equations have been included for those

interested in calculating one or more of the aforementioned

land-surface parameters, as these can be used for segmenting

the topography into land-surface objects that are useful for

geomorphological mapping. Furthermore, many of the sec-

ondary parameters can be used in geomorphological research

related to assessment of hydrological, glaciological, and geo-

logical conditions. The current state of the art suggests that the

present-day terrain analyst will need to choose wisely among

the extreme multitude of options (i.e., data, algorithms, an-

alysis approaches, and models), while paying special attention
to their own project goals, the advantages and disadvantages

of different data sources and digital terrain modeling techni-

ques, the characteristics of their study area(s), and how errors

might have been introduced and propagated, and the likely

significance of these errors, given the results that are produced.
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