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Research Article

Multi-scale and multi-criteria mapping of mountain peaks as fuzzy
entities

Y. DENG*{ and J. P. WILSON{
{Department of Geography, Western Illinois University, Macomb, IL 61455-1390, USA

{Department of Geography, University of Southern California, Los Angeles, CA 90089-

0255, USA

(Received 2 July 2006; in final form 27 March 2007 )

Mountain peaks are mapped as multi-scale entities with modifiable boundaries

and variable contents. Four semantic meanings are imported and quantified to

first characterize peaks at a range of spatial scales and then evaluate the multi-

criteria ‘peakness’ at each scale. Peakness is defined as the prototypicality of

identified summits and as the similarity of each point (cell) to summits. The

procedure then summarizes the individual-scale peakness across considered

spatial scales into a univariate membership surface. This allows mapping of

vague peak entities as non-homogeneous peak regions whose boundaries depend

on user-specified peakness thresholds. This procedure was applied in a case study

to tackle several challenges in landform delineation, including boundary, spatial

continuity, spatial scale, topographic context, and multi-criteria definition.
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1. Introduction

Terrain surfaces usually exist as spatial continua and ‘individual landforms are

seldom bona fide objects with crisp boundaries of their own’ (Smith and Mark 2003;

also see Wood 1998, Fisher et al. 2005). For instance, mountain peaks demonstrate

spatial gradation to surrounding hillslopes, thematic similarity to ridges, and fuzzy

distinctions with hills or mountains that contain peaks (Mark and Smith 2004,

Schmidt and Hewitt 2004). A locally prominent peak may (or may not) become

unimportant when observed at a much farther distance. The diverse real-world

meanings of peaks (e.g. for pilots, scientists, mountain climbers, and wildfire

fighters) imply additional variations in thematic criteria and geographic delineation.

Vagueness thus exists not only for peak boundaries, but also for the central concept

‘peak’ itself (Fisher et al., in press). A realistic GIS representation of peaks should

therefore simultaneously take into account: (1) the spatial continuity of terrain

surfaces; (2) the multi-criteria and non-uniform peak perceptions; and (3) the multi-

scale and contextual (nesting and nested) nature of topography. This paper focuses

on these goals and describes a procedure that maps peaks as multi-scale, multi-

criteria fuzzy spatial entities.
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2. Related literature

Mackay et al. (1992) advocated use of higher-order geographic objects (HOGO),

rather than just cells, for topographic characterization, and they incorporated

inexact reasoning to indicate the fuzzy certainty level of the resultant delineations.

Graff and Usery (1993) distinguished prototype ‘mounts’ from non-prototype

mounts after translating the qualitative definition of mount into a series of

quantitative rules. Usery (1996) later used elevation to derive mount memberships.

These efforts represent early implementations of SI (semantic import) fuzzy sets

(Burrough and McDonnell 1998, pp. 270–273), and they typically characterize

landforms in a simplified way and at a narrow range of spatial scales. Wood (2004)

suggests using relative drop (rd) to quantitatively compare peak memberships and to

represent nested, multi-scale peaks. rd addresses the multi-scale topographic

position well, but it is difficult to use this single criterion to represent rich surface

morphometric characteristics.

Fisher et al. (2004, 2005) assigned each grid point to a morphometric class—pit,

peak, pass, ridge, channel, or plane—and then summarized all Boolean belongings

of this point across a wide range of DEM resolutions into fuzzy memberships to

these classes. This multi-scale approach is semantically (categorically) explicit, but

unable to link typicality of produced landforms to terrain surface shape (e.g.

steepness). Lucieer and Stein (2005) used an expanding circular ring to characterize

the central point by accumulating the sign of elevation difference between the

central point and equally spaced points on the ring. Multi-scale summit points could

then be identified as having the highest accumulated number of positive signs. This

approach also ignores local variability in topographic shape (e.g. between rings and

sample points). It produces crisp landform objects, and the ring-based sampling

scheme may not be representative enough when the ring is greatly enlarged,

especially in a complex landscape.

Hence, there has been a growing trend of considering higher-scale topographic

contexts in landform classification, in which an expanding window is often

employed (e.g. MacMillan et al. 2000, Schmidt and Hewitt 2004; also see Mackay et

al. 1992). However, a key challenge persists regarding how to characterize local

variability in combination with wider contexts, and to describe broad contexts

without losing local (or smaller-scale) details. This indicates a need of combining

multi-scale considerations with multiple criteria and with the spatial continuity of

topography.

3. Methods

3.1 Characteristics of the procedure

The procedure described in this paper employs a similar approach to the MRVBF

(multi-resolution valley bottom flatness) index of Gallant and Dowling (2003).

MRVBF uses slope that is calculated with DEMs of coarsening resolutions (with a

correspondingly decreasing slope threshold) and elevation percentile that is

calculated with an expanding window. Slope is inverted into a flatness index, and

the elevation percentile is inverted into a lowness index. The two indexes are

combined by multiplication at each scale to give the valley bottom flatness (VBF) of

that scale. VBF is then summarized across a range of considered (and weighted)

scales to produce the value of MRVBF representing the multi-scale membership to

valley bottoms. Thresholds of MRVBF may define boundaries of valleys, but the
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internal variability of these valleys is retained. In this way, MRVBF translates

semantic meanings of valley bottoms first into quantifiable terrain attributes

(indexes) at multiple scales, and then into fuzzy landform objects with modifiable

boundaries.

The procedure in this paper also presents several differences from MRVBF. First,

with the expansion of considered context (scale), it does not generalize the DEM to

save computation time because in the rugged landscape, in contrast to relatively flat

valley bottoms, summit definitions and terrain attributes may vary dramatically

with DEM resolution change (Deng et al. 2007). Dealing with a fine-resolution

DEM throughout the procedure necessarily affects the computation speed and limits

the number of considered scales.

Second, MRVBF is directly calculated from topographic attributes, but the

procedure in this paper first derives multi-scale peak class centres and then uses

them to calculate peakness, or peak prototypicality and similarity (Fisher et al.

2005). In correspondence, the procedure uses an attribute distance function (see

equation (4) below), rather than multiplication, to summarize attributes for multi-

criteria peakness. This allows flexible incorporation of multiple criteria with

modifiable weights and avoids over-sensitivity of peak memberships to one attribute

(see equation (2) below).

Third, MRVBF uses a nonlinear function to transform input variables into values

ranging between 0 and 1, so that the magnitude of MRVBF may be controlled; but

the procedure in this paper uses a statistical transformation in consideration of the

study area context (see equations (2) and (5) below). This necessarily implies that: (1)

peakness falls between 0 and 1; and (2) peakness is more closely tied to and more

dependent on the studied landscape situation than MRVBF that may need

adjustments of parameters (e.g. thresholds, scale factors, etc.) for its adaptation to

specific landscapes.

3.2 Case-study area and data

A 17.469.3 km2 area in the Santa Monica Mountains, California, was chosen for

the case study (figure 1). This area is characterized by steep slopes, high relief (more

than 940 m), and rugged, deep-cutting fluvial topography. A visual interpretation of

Figure 1. Study area DEM and summit cells identified with moving circular windows of
three radii: five cells, 20 cells, and 80 cells. The white inset box indicates the area shown in
figures 2, 3, and 6(a).
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the study area DEM indicates that mountain peaks in this small study area vary

greatly in terms of elevation, relief, shape, size, steepness, isolation/connectedness,

etc. A USGS 10 m DEM was used for the case study. All computations were carried

out in ArcGIS 9.0 on a desktop computer using existing functions of the software.

3.3 Identify summit points

An expanding circular window—signifying a higher scale or growth of spatial

contexts—helps identify candidate summit cells on a DEM using maximum

elevation and high relief (above a pre-specified threshold) in the window as the

criteria. The threshold relief determines the number of candidate summits, many of

which will be found to have low peakness, even though they are selected as summits,

thus minimizing the effect of this threshold. Larger relief thresholds are chosen for

larger window sizes. Analysing on a continuous range of spatial scales would

produce an ideal representation of the scale effect, but large window sizes would

tremendously increase the time used for cell-by-cell neighbourhood computations,

especially on high-resolution DEMs (e.g. (10 m). This factor limited the number of

windows tested in the case study.

The case study used three circular moving windows—with five-cell, 20-cell, and

80-cell radii—to represent change of spatial scales. Relief thresholds of 20 m were

used for five-cell windows, and 80 m for 20-cell and 80-cell windows. In all,

3542 cells were identified to be summits with the five-cell radius windows, 562 with

the 20-cell radius, and 121 with the 80-cell radius. Many of the summit cells

neighbour each other (indicating flat hilltops on the 10 m DEM), so there appear to

be far fewer summit cells on the map (figure 1). Larger windows and the higher relief

threshold produced fewer summits, which appear at more prominent topographic

locations.

3.4 Characterize peaks

Four semantic meanings of the prototype peak are identified and then imported into

the procedure based on the expert knowledge. A typical peak would be the summit

that: (1) has high down-slope relief in a local area; (2) is steep in this local area; (3)

has high elevation in comparison with a large surrounding neighbourhood (e.g.

much larger than the local area in (1) and (2)); and (4) does not have many

competing peaks in this large neighbourhood. The first two describe inherent

morphometric properties of peaks, whereas the latter two are for topographic

contexts. These properties are applicable to non-summit points, too, making peaks

comparable with the landscape background. It is nevertheless important to note

that, without identifying and importing the ‘peak’ central concept, these four

properties are insufficient in depicting peak memberships and boundaries. For

example, many steep slopes satisfy the first and second criteria, mountain-top

plateaus satisfy the third, and low-lying basins satisfy the fourth criterion. This point

is demonstrated in the case study (e.g. figure 2).

The four properties are quantified next. Down-slope relief is calculated as the

difference between the central cell elevation and the minimum elevation in a local

circular window (the same as that used to identify summit points); steepness is as the

mean slope of all cells within this window. High elevation and lack of competing

peaks are quantified using a much larger window (three times larger in the case

study). The third property, altitude height, is represented with a relative altitude (Hs)
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that is calculated from the summit elevation (Es), the maximum elevation (Emax),

and the minimum elevation (Emin) in the large window:

Hs~
Es{Emin

Emax{Emin

|100 ð1Þ

Hs calculation is very time-consuming with large windows. For example, it took

more than 10 h on a desktop computer to calculate Hs for the summits identified

with the 80-cell radius window in the case-study area (of about 1.616106 cells).

Generalizing DEM would increase the computation speed but would result in loss of

summits and decaying precision of summit locations and relief in this procedure, so

that the computation of neighbouring summits and Hs would both be problematic.

In addition, the topographic meanings of local peak properties would be changed in

the process of generalizing DEMs (e.g. see Deng et al. 2007) since one large cell on

the generalized DEM may contain (or hide) important ‘local’ variability in the peak

area. The fourth property is represented with the count of summits in the large

window because the prominence of a peak identified in a 10 000 m2 area may be

influenced by other nearby (e.g. ,300 m) peaks, but not by peaks located too far

away.

Figure 2. Peak attributes corresponding to summits identified with the 20-cell radius
moving window: (a) local relief; (b) local mean slope; (c) relative altitude in a large
surrounding neighbourhood; and (d) number of summit points in the surrounding
neighbourhood. The area covers the inset box in figure 1 (viewed roughly from a NNW
direction), and the properties are draped on the 10-m DEM (with a vertical exaggeration of
1.27 times).
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Figure 2 presents the above four peak properties for the case-study area

corresponding to 20-cell radius summits. The primary role of these properties is to

distinguish more prominent peaks from others. For example, the relative flatness of

mountain-top summits (e.g. the upper arrow in figure 2(b)) may prohibit the summits

from gaining a higher peakness at this scale than a lower but steeper summit (e.g. the

lower arrow in figure 2(b)). The prominence of this lower summit, however, may in

turn be affected by its moderate altitude characterized at a coarser scale.

3.5 Calculate peak prototypicality

The four peak properties are summarized into the peak prototypicality (Qj), ranging

between 0 and 1, at each (jth) scale:

Qj~
Xn

i~1

wi aij{min aij

� �

max aij{min aij

� � ð2Þ

where max aij and min aij are the maximum and minimum of property ai among all

summit points identified at the jth scale, aij is ai for each summit at the jth spatial

scale, n is the number of properties, and wi is the weight of the ith attribute

(
P

wi~1). The inverse value of the number of neighbouring summits (plus one, as

some points have no neighbouring peaks) is used in this calculation. When a

particular peak property needs to be emphasized, it may take a higher weight.

Allowing weights of these properties to be modifiable would help integrating

particular human purposes and situations, so as to partly address the ‘higher-order’

vagueness issue (Fisher et al., in press; also see Deng et al., 2006, for the effects of

attribute weights), but this possibility is not tested in the case study.

The case study adopted a uniform weight for the four peak properties. The

resultant Qj effectively differentiated the prototypicality of summits at three spatial

scales (figure 3). A prominent summit at a fine scale may not be prominent at a

Figure 3. Individual-scale peak prototypicality for five-cell, 20-cell, and 80-cell radius
summits of the inset area in figure 1, with a 10-m DEM background.

210 Y. Deng and J. P. Wilson



coarser scale, and vice versa. High prototypicality summits may not be exclusively

contained in high-elevation areas.

3.6 Summarize peak prototypicality across scales

Peaks may appear differently when observation scale varies (e.g. figure 3), and the

overall typicality of a summit can be evaluated by summarizing Qj across all

considered spatial scales into a single value Q. Two rules are established in so doing:

(1) summits identified at all scales are recognized (with a non-negligible weight) in

the summarizing process; and (2) coarser scales produce more important summits,

thus receiving higher weights. Q is written as:

Q~

Pm

j~1

wj|Qj

� �

Pm

j~1

wj

ð3Þ

where wj is the weight of scale j, and m is the total number of scales considered.

Large differences between weights of scales would cause Q to rely heavily on peaks

identified at coarse scales, resulting in a loss of local variability in peakness. The

effect of varying scales weights will be discussed in section 3.7.4. Weights of 1, 1.2,

and 1.4 were selected in the case study for summits with five-cell, 20-cell, and 80-cell

radius windows. Based on Q of summit points, many (but not all) prominent peaks

were identified along the central ridgeline (figure 4). The consideration of

topographic context (Hs and number of neighbouring peaks) allowed the distinction

between more important peaks and numerous others along this central ridgeline. A

maximum prototypicality measure of only 0.70 was obtained because the adopted

peak properties did not co-vary from peak to peak, and/or from scale to scale.

Figure 4. Overall peak prototypicality across three considered spatial scales for all summit
cells identified at these scales.
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3.7 Evaluate similarity to peaks

The previous steps identify peaks as summit points and evaluate their prototypi-

cality, and the following steps will expand the idea and map peaks as fuzzy areal

objects with modifiable boundaries.

3.7.1 Peak class centre. A threshold Qj is specified to select the most typical

summits or peak prototypes at each spatial scale. The peak class centre is then

calculated as the mean properties of prototype peaks. The case study used the top

20% Qj to identify prototype peaks and to calculate the peak class centre (table 1),

which tends to have a high relief, steep slope, high relative altitude, and small

number of competing peaks (e.g. in reference to figure 2). With the coarsening of

spatial scales, peak class centres show an obvious increase in relief and decrease in

slope and relative altitude, all due to the rugged mountainous terrain of the study

area. Other thresholds of Qj were tested, too, and a decreasing threshold increased

local relief, slope, and non-local relative altitude of class centres, but did not cause a

trended change for the number of neighbouring peaks. The effect of this threshold

on peakness will be explained in section 3.7.4.

3.7.2 Similarity to peak class centre. The four peak properties are used to calculate

the similarity of each point to a scale-specific peak class centre in two steps: first,

calculating an attribute distance between each point and a peak class centre, and

second, converting the attribute distance into a relative similarity measure. The case

study used the diagonal norm distance function. At the jth spatial scale, the attribute

distance (dkj) between a grid point k and the jth class centre is calculated as:

dkj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i~1

1

s2
ij

aik{aij

� �2

s
ð4Þ

where sij is the standard deviation of property ai at the jth spatial scale, aik is the

value of the property ai for point k at the jth spatial scale, aij is the jth peak class

centre value for property ai, and n is the number of properties used. A larger dkj

signifies less similarity between a point and a peak class centre, and, for the easiness

of interpretation, dkj is converted into a membership mkj whose value ranges from 0

(different) to 1 (the same):

mkj~
max dj{dkj

max dj{min dj

ð5Þ

where max dj and min dj are the maximum and minimum attribute distances between

the jth class centre and all grid points across the entire area.

Table 1. Attributes of peak class centres for summit cells identified at three spatial scales.

Radius of local moving window (cell)

Window size for peak identification 5 20 80
Window size for attribute calculation 5 15 20 60 80 240
Local relief (m) 55.9 145.6 392
Local mean slope (u) 35.7 30.2 24.7
Relative altitude (%) 97.8 96.4 91.9
Number of neighbouring peaks 3 7 6
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Figure 5 shows the mkj of the case-study area at three spatial scales. Focus on the

local variability at a fine spatial scale (figure 5(a)) produced a more heterogeneous

variability of peakness, which differentiated local contexts and shape of peaks but did

not distinguish between ‘peaks for hills’ and ‘peak for the mountain’. This second goal

was reached by the coarse-scale peakness (figure 5(c)), on which contiguous,

prominent high-peakness areas were formed in the high-elevation ridgeline area.

The production of these peakness patterns makes it possible to combine various

spatial scales that characterize both local variability and high-order contexts.

3.7.3 Peak class membership across scales. In a similar way to equation (3), mkj is

summarized across all considered spatial scales to produce an overall peak

membership mk for each point k:

mk~

Pm

j~1

w’
j|mkj

� �

Pm

j~1

w’
j

ð6Þ

where wj9 is the weight of the jth scale, and m is the number of scales considered.

Heavier weights should again be given to coarser spatial scales.

Calculation of mk for the case-study area used the same set of weights for wj9 as for

wj in equation (3), and the results strongly pronounced the difference between peak

and non-peak areas, especially along the central ridgeline (figure 6). However, each

point—even the valley bottom—has a non-zero similarity to peaks, allowing

peakness comparison across the entire landscape. Some high-elevation points

presented low mk values (figure 6(a)) because they have poorer peakness properties

(e.g. shape, position, and context).

3.7.4 Effect of varying wj9 and threshold Qj on mk. Three groups of cells across an

adjacent hill-valley transect were visually selected on a 10 m DEM to test the effects

of varying threshold Qj and wj9 on mk. They include five neighbouring summit cells

(525–527.5 m in elevation), seven neighbouring hillslope cells (431.1–435.8 m), and

25 neighbouring valley bottom cells (303.3–303.9 m). Six thresholds of Qj were tested

for their effect on varying class centres (section 3.7.1) and hence mk—2%, 5%, 10%,

15%, 20%, and 30%—and the results are presented in figure 7(a). Increasing

threshold Qj has apparently decreased the mk contrast between peaks and valleys, and

caused more sensitive response (consistently increasing mk) on valley/slope cells than

on summit cells. Summit cells did not respond until threshold Qj.10% and had only

a slight decrease in mk. Five wj9 combinations were tested for equation (6). For five-

cell, 20-cell, and 80-cell radii (in that order), they are respectively: (1) 1, 1, 1; (2) 1,

1.2, 1.4; (3) 1, 1.5, 2; (4) 1, 2, 3; and (5) 1, 3, 5. With the increase of coarse scale

weights, the mk contrast between summit cells and valley/slope cells decreased; valley

cells seemed to be the most sensitive and presented consistent mk increase; mk change

of summit cells is minor with a weak decreasing trend (figure 7(b)).

3.8 Delineating boundaries for peak entities

Acting in the same way as an a-cut in the fuzzy set theory (Cheng 2002, Robinson

2003), thresholds of mk can be easily translated into modifiable belongingness of k to

a peak and helps delineating peak entities as high mk areas with fuzzy (or adjustable)
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Figure 5. Distribution of similarity to peak class centres (peakness, or mkj) defined at three
spatial scales, corresponding to five-cell radius window summits (a), 20-cell radius window
summits (b), and 80-cell radius window summits (c). The raster layers are draped on the 10-m
DEM with a vertical exaggeration of 1.61 times.
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boundaries. A threshold of mk corresponds to both peak entity size and peak entity

properties, making it an exploratory tool for peak delineation (e.g. figure 8). Peak

entities may be viewed as uniform objects characterizing statistical summaries (e.g.

mean) of mk, mkj, and peak properties (section 3.4). The internal variability of peak

entities may in the mean time be retained as separate raster layers. Four mk

thresholds—0.80, 0.74, 0.70, and 0.65—defined four sets of enlarging peak entities in

the case-study area (figure 8). With a very high threshold mk, only the most typical

peaks were depicted covering a small area that concentrated along the central

Figure 6. Distribution of overall peakness (mk) summarized across the three considered
spatial scales: (a) the inset area in figure 1 draped on 10-m DEM (with a vertical exaggeration
of 1.27 times and a roughly NNW viewing direction; E is elevation); and (b) the entire area.
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ridgeline. A lowering threshold mk would allow peaks to grow into fuzzy peak

regions. Three meanings of fuzziness were thereby implemented: (1) adjustability of

peak boundary; (2) variable typicality of a peak region in terms of average or

minimum mk; and (3) non-uniform contents of peak regions.

Figure 7. Sensitivity of peakness (mk) to threshold peak protopyticality Qj (a) and weights of
scale wj9 (b), assigned using five weight combinations (see section 3.7.4). The sensitivity is
demonstrated with three sets of cells representing peaks, hillslopes, and valleys.

Figure 8. Peak regions (white areas), or peak entities, delineated based on four threshold
memberships of overall peakness: 0.80 (a), 0.74 (b), 0.70 (c), and 0.65 (d). The background
greyness represents peakness (mk), which is draped on the 10-m DEM with a vertical
exaggeration of 1.61 times.
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4. Discussion

N The consideration of multiple spatial scales has been combined with weighted

summary of spatial scales, and attention is paid to the topographic context (e.g.

number of neighbouring peaks), position (e.g. relative altitude), as well as the

shape (e.g. slope and local relief) of the peaks. All these helped the depiction of

contiguous yet internally variable peak entities.

N The derivation of summits, peak properties, Qj, mkj, and class centres is all based

on the consideration of the entire study area, and mk is consequently specific for

the landscape where it is derived.

N As mentioned in section 3.2, the slow computing speed incurred by large

neighbourhood windows is a weakness of the procedure, especially for peak

delineations of large areas. Since generalizing DEMs may incur undesirable

effects in this procedure, a more satisfactory solution for this problem has yet

to be found.

N Large moving windows used for peak property calculation will be incomplete

along DEM edges, causing distortions to the output. A wide DEM margin

should be included for the calculation of peak properties, but excluded from

further analysis. For example, the use of a 240-cell radius circular window on a

10 m DEM—necessary for the characterization of 80-cell radius peaks—means

that only the area farther than 2.4 km from the edge would not be influenced

by the edge effect, and more severe distortions would appear near the edge, as

exemplified by the two questionable, high-prototypicality summits along the

eastern edge in figure 4.

5. Conclusions

A procedure was proposed that combines multiple spatial scales and multiple

semantic meanings to delineate mountain peaks as fuzzy entities, which have flexible

boundaries, fuzzy typicality, spatially contiguity, and non-homogeneous contents.

Memberships to a multi-scale, multivariate peak class centre were derived to

represent the spatial continuity of the terrain surface, or gradation of feature

boundaries. The scale dependency of peaks was addressed by a consideration of

both individual scales and scale-to-scale connections. Not only the local peak

properties but also the topographic position and contexts of the peaks were

considered. Weights of peak properties and spatial scales, and thresholds of

peakness for peak boundaries were all modifiable, making it possible to develop

purpose-oriented mapping of mountain peaks. Hence, the procedure has the

potential of bridging qualitative peak meanings to quantitative definitions and

geographic delineations of peaks.
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