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Abstract Ground observation is able to obtain highly ac-

curate data with high temporal resolution at observation

points, but these observation points are too sparsely to satisfy

the application requirements at regional scale. Satellite re-

mote sensing can frequently supply spatially continuous

information on earth surface, which is impossible from

ground-based investigations, but remote sensing description

is not able to directly obtain process parameters. In fact, in

terms of fundamental theorem of surfaces, a surface is

uniquely defined by the first fundamental coefficients, about

the details of the surface observed when we stay on the

surface, and the second fundamental coefficients, the change

of the surface observed from outside the surface. A method

for high accuracy surface modeling (HASM) has been de-

veloped initiatively to find solutions for error problem and

slow-speed problem of earth surface modeling since 1986.

HASM takes global approximate information (e.g., remote

sensing images or model simulation results) as its driving

field and local accurate information (e.g., ground observa-

tion data and/or sampling data) as its optimum control con-

straints. Its output satisfies the iteration stopping criterion

which is determined by application requirement for accura-

cy. This paper reviews problems to be solved in every de-

velopment stage and applications of HASM.

Keywords Surface modeling method � HASM � Error �
Computational speed � Memory requirement � Accuracy

Introduction

Ground observation can obtain high accuracy data at ob-

servation points, but observations at fixed positions are

confined within some limited dispersal points and not able
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to directly calculate relative parameters at regional scale.

Satellite remote sensing can frequently supply surface in-

formation of geographical processes and ecological pro-

cesses, but remote sensing description is not able to

directly obtain process parameters. Remote-sensing data

can generate information about earth surface that is im-

possible from ground-based studies. The timing and extent

of land-cover change and the relationship between climate

and phenology highlight unique information that is avail-

able only from satellite and airborne sensors (Chambers

et al. 2007). However, maps derived from satellites ob-

servations are patchy and can not be used reliably as an

independent source of information for earth surface

monitoring because of the well-known limitations of

satellite retrievals, such as missing data for cloud-covered

pixels (Emili et al. 2011).

In fact, earth surface systems are controlled by a combi-

nation of global factors and local factors, which can not be

understood without accounting for both the local and global

components. The system dynamic can not be recovered from

the global or local controls alone (Phillips 2002). In terms of

fundamental theorem of surfaces, a surface is uniquely de-

fined by the first fundamental coefficients and the second

fundamental coefficients. The first fundamental coefficients

express the information observed when we stay on the sur-

face, about the details of the surface. The second funda-

mental coefficients express the change of the surface

observed from outside the surface (Somasundaram 2005).

Many studies are based on either satellite observations

(e.g., Gupta et al. 2014) or ground observations (e.g.,

Alkhasawneh et al. 2014; Liu et al. 2013). It has been

proven that simulation results would have bigger errors

when only satellite measurements or ground measurements

are considered. For instances, no matter what kind of

support vector machine (SVR) models and what parameter

optimization method were used, the relative errors of many

points exceeded 20 % when predicting mining subsidence

in the water area using original observation data of the

subsidence area without water directly in Eastern China (Li

et al. 2014). A comprehensive survey in Guyana indicated

that estimates only based on remotely sensed data may be

inaccurate (Butt et al. 2015).

Combination of satellite measurements with ground

measurements can considerably improve simulation accu-

racy. For instance, utilizing a satellite image as secondary

information decreased errors associated with yield monitor

data and also allowed better prediction in areas where no

reliable yield measurements were available (Dobermann

and Ping 2004). Gross primary production (GPP) and net

ecosystem exchange (NEE) were simulated by assimilating

meteorological data derived from the measurements from

existing weather stations, forest volume data derived from

a previous investigation, satellite data, flux tower data, and

other ancillary data, which rendered the simulation more

stable and accurate (Chiesi et al. 2011). Errors of water

vapor estimation were reduced up to certain extent using

both satellite observations and ground observations over

the Walnut Creek region in USA (Srivastava et al. 2014).

A high accuracy and speed method (HASM) for surface

modeling has been developed initiatively to efficiently

assimilate remote sensing data with ground-based obser-

vation data since 1986 so that solutions could be found for

error and slow-speed problems which have long troubled

earth surface modeling. This paper focuses on HASM,

especially how problems, appearing in every development

stage, were solved by introducing appropriate theories and

methods.

Development of high accuracy surface modeling

The development process of HASM can be divided into

four stages (Table 1). In the first stage from 1986 to 2001,

studies were based on curve-theorem, dealing with a sur-

face as a combination of its profiles. It was learnt that slope

and curvature are significant variables of surface analysis

(Evans 1980). In fact, a curve is uniquely determined by its

slope and its curvature in terms of curve-theorem in the

plane (Spivak 1979).Following this consideration, a model

for modeling cirques was constructed in terms of curve-

theorem (Yue and Ai 1990), which was then developed for

change detection of earth surface (Yue et al. 2002).

In the second stage from 2001 to 2007, studies were

based on fundamental theorem of surfaces, paying attention

Table 1 The most important features of HASM per stage

Development stage Theoretic foundation Research focus

From 1986 to 2001 Curve-theorem Dealing with a surface as a combination of its profiles

From 2001 to 2007 Fundamental theorem of surfaces Error problems

From 2008 to 2011 Fundamental theorem of surfaces Low computational-speed and large memory-requirement problems

Since 2012 Fundamental theorem of surfaces Improvement of HASM and its parallelization
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to error problem (Yue 2011). It is proven that the equation

of Earth’s surface can be formulated as (Kerimov 2009),

z ¼ f ðx; yÞ, where z is an attribute value of the earth’s

surface at location (x, y). For the surface z = f(x, y), an

iterative formulation of HASM was developed in terms of

the fundamental theorem for surfaces (Yue et al. 2007),

which was transformed into a symmetric positive-definite

and large sparse linear system.

In the third stage from 2008 to 2011, studies were

based on fundamental theorem of surfaces, paying atten-

tion to low computational-speed and large memory-re-

quirement problems. HASM has a huge computation cost

because it must use an equation set for simulating each

lattice of a surface. To speed up the computation of

HASM, we developed a multi-grid method of HASM

(HASM-MG) (Yue and Song 2008; Yue et al. 2013a), an

adaptive method of HASM (HASM-AM) (Yue et al.

2010a), an adjustment computation of HASM (HASM-

AC) (Yue and Wang 2010), and a preconditioned conju-

gate gradient algorithm of HASM (HASM-PCG) (Yue

et al. 2010b). Multi-grid method is the fastest numerical

method for solving partial differential equations, which is

based on two principles that are error smoothing and

coarse grid correction. The principle of the adaptive

method is that grid cells where the error is large will be

marked for refinement, while grid cells with a satisfied

accuracy are left unchanged. The adjustment computation

permits all observations, regardless of their number or

type, to be entered into the adjustment and used simul-

taneously in the computations by means of least squares.

A conjugate gradient algorithm was originally viewed as

an acceleration technique for the effective solution of

large linear systems by a succession of well-convergent

approximations; the preconditioned conjugate gradient

algorithm can be developed by introducing a precondi-

tioner to ensure faster convergence of the conjugate gra-

dient method.

In the fourth stage since 2012, Gauss–Codazzi equation

set was introduced into HASM (Yue et al. 2013b; Zhao and

Yue 2014a). We found that accuracy of HASM was not so

satisfied in a few cases of multitudinous numerical tests

and real-world tests. In other words, HASM performance

was not stable enough for all applications. The reason was

that second-order central difference stencil, that we em-

ployed for HASM solution, had no element on the diagonal

corresponding to fi,j. This led to algebraic systems with loss

of diagonal dominance.

A combination of a forward difference stencil and a

backward difference stencil has produced a symmetric

stencil, which has a non-zero coefficient in the diagonal

and can thus restore the diagonal dominance of the corre-

sponding matrix in the algebraic systems. This refined

symmetric stencil is of second-order on a uniform grid and

can give a solution to the instability when solving the al-

gebraic equations of HASM.

Let f
ð0Þ
i;j ¼ �fi;j at the sampled point ðxi; yjÞ in the com-

putational domain, ðxi; yjÞ 2 U, and U ¼ fðxi; yj; �fi;jÞj0�
i� I þ 1; 0� j� J þ 1g be the set of sampling points, then

the matrix formulation of HASM can be expressed as,

½A B C kS �

A
B
C
kS

2
664

3
775Zðnþ1Þ ¼ ½A B C kS �

dðnÞ

qðnÞ

pðnÞ

kk

2
664

3
775

ð1Þ

whereZðnþ1Þ ¼ ðf ðnþ1Þ
1;1 ; . . .; f

ðnþ1Þ
1;J ; . . .; f

ðnþ1Þ
I;1 ; . . .; f

ðnþ1Þ
I;J ;

A, B, and C, respectively, represent coefficient matrixes of

the first, second, and third equation of HASM master equa-

tion set; d(n), q(n), and p(n) are, respectively, the right-hand

side vectors of the HASM master equation set; the non-zero

element of the sample matrix S can be expressed as

Sp;ði�1Þ�Iþj ¼ 1 and the non-zero element of the sample

vector kp ¼ �fi;j; k is the weight of the sampling points and

determines the contribution of the sampling points to the

simulated surface.

In terms of fundamental existing theorem for surfaces, if

the first and second coefficients satisfy Gauss–Codazzi

equations, there exists a surface uniquely determined

within a Euclidean displacement (Somasundaram 2005).

The Gauss–Codazzi equation can be transformed into

ðu1y � /2x � u2P� /1QÞ2 þ ðu2x � /1y � u1Q� /2PÞ2

þ ðQx þ Py þ u1u2 � /1/2Þ2
¼ 0

ð2Þ

where E, F, and G are the first fundamental coefficients; L,

M, and N represent the second fundamental coefficients;

u1 ¼ Lffiffiffi
E

p ;u2 ¼ Nffiffiffi
G

p ;P ¼
ffiffiffiffi
Ey

p
ffiffiffi
G

p ;Q ¼
ffiffiffiffi
Gy

p
ffiffiffi
E

p ;/1 ¼ Mffiffiffi
G

p and

/2 ¼ Mffiffiffi
E

p

Thus, we can design an iteration stopping criterion of

the improved HASM as,

ðu1y � /2x � u2P� /1QÞ2 þ ðu2x � /1y � u1Q� /2PÞ2

þ ðQx þ Py þ u1u2 � /1/2Þ2 \ EI

ð3Þ

where EI is determined by the requirement of an applica-

tion for simulation accuracy.

Although HASM performance has been considerably

improved because of the introduction of the refined sym-

metric stencil and the Gauss–Codazzi equations, as a con-

sequence it has caused the low-speed problem once again.
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Applications of high accuracy surface modeling

HASM has been successfully applied to constructing

digital elevation models (Yue et al. 2007; Chen and Yue

2010; Chen et al. 2013a, b), filling voids in the Shuttle

Radar Topography Mission (SRTM) dataset (Yue et al.

2012), simulating climate change (Yue et al. 2013a, b;

Zhao and Yue 2014a, b), filling voids on remotely sensed

XCO2 surfaces (Yue et al. 2015a), modeling surface soil

properties (Shi et al. 2011) and soil pollution (Shi et al.

2009), and analyzing ecosystem responses to climatic

change (Yue et al. 2015b). In all these applications, HASM

produced more accurate results than the classical methods.

For instance, HASM was applied to simulate the

elevation surface of the Dongzhi tableland in the Loess

Plateau region of China. The validation results showed that

HASM-AM has the highest accuracy and the fastest com-

putation speed, compared with widely used classic methods

(Yue et al. 2010a). The Dongzhi tableland has an area of

2.724 km2, which makes for 27.24 million pixels at a

spatial resolution of 10 m 9 10 m, while the area of the

Earth’s surface is 510 million km2, which makes for 5.1

million pixels at a spatial resolution of 10 km 9 10 km. In

other words, HASM has the capacity of computing more

than five of the Earth’s surfaces at a spatial resolution of

10 km 9 10 km.

The shuttle radar topography mission (SRTM) datasets,

which were derived from the Space Shuttle Endeavour in

February 2000, have become a useful source of elevation

data and are critical to modern imagery analysis and

geospatial intelligence requirements. However, STRM data

have variously sized voids, resulting in incomplete data

sets. These voids account for 0.15 % of the total data set in

China. They cover as much as 30 % of the surface in

rugged terrain. HASM was used to fill voids in China (Yue

et al. 2012). Verification in nine regions with three dif-

ferent geomorphologic units consisting of hills, plateaus

and mountains demonstrated that HASM results always

had the highest accuracy compared to all of the classic

methods, whether auxiliary data were added or not, whe-

ther landform complexity was higher or lower, and whether

the void areas were larger or smaller in all the nine regions.

HASM has also been used to simulate climate trends in

China since 1961 (Yue et al. 2013a, b). We have found that

mean annual temperature (MAT) during the period

1961–2010 exhibited spatial stationarity, while mean an-

nual precipitation (MAP) showed spatial non-stationarity.

A statistical transfer function (STF) of MAT was formu-

lated using minimized residuals output from HASM with

an ordinary least squares (OLS) linear equation that used

latitude and elevation as independent variables, abbreviat-

ed as HASM-OLS. The STF of MAP under a Box-Cox

(BC) transformation was derived as a combination of

minimized residuals output by HASM with a geo-

graphically weight regression (GWR) using latitude, lon-

gitude, elevation, and an impact coefficient of aspect and

sky view factor as independent variables, abbreviated as

HASM-GWR-BC. Cross validation of HASM-OLS and

HASM-GWR-BC indicates that mean absolute errors of

MAT and MAP are -0.15 �C and 1.52 mm, respectively,

which were much than the errors generated with the clas-

sical methods. In terms of HASM-OLS and HASM-GWR-

BC, MAT shows an increasing trend since the 1960s in

China, with an accelerating increasing trend since 1980.

Our simulation showed that MAT has increased by 1.44 �C
since the 1960s. The warming trends increase from the

south to the north in China, with the exception of the

Qinghai-Xizang plateau. Specifically, the 2100 �C�d con-

tour line of annual accumulated temperature (AAT) of

C10 �C has shifted northwestward 255 km in the Hei-

longjiang province of northeastern China since the 1960s.

The MAP in the Qinghai-Xizang plateau and in arid re-

gions also shows a continuously increasing trend. On av-

erage, China became wetter from the 1960s to the 1990s,

but drier from the 1990s to the 2000s. The Qinghai-Xizang

Plateau and northern China have experienced more cli-

matic extremes than southern China since the 1960s.

The Coupled Model Intercomparison Project Phase 5

(CMIP5) datasets have been used for the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change

(AR5). These simulations of general circulation models

(GCMs) have offered unprecedented opportunities to ana-

lyze the attributes of climatic projections for the twenty-

first century. However, due to the coarse spatial resolution

of GCMs (200–500 km), it is difficult to assess climate

change impacts at regional and local levels (Grotch and

MacCracken1991; von Storch et al. 1993; Raisanen 2007;

Prudhomme and Davies 2009; Harding et al. 2013). Tem-

perature and precipitation data from CMIP5 were down-

scaled by means of HASM-OLS and HASM-GWR-BC

(Yue 2011). Comparing the original CMIP5 historical

simulation and the observed data during the baseline pe-

riod, T1 (1961–2010) indicated that the mean absolute

error of MAT from the original CMIP5 data was 2.04 �C
(Yue 2015). Especially the mean absolute errors were, re-

spectively, 4.64, 3.39, 2.58, and 2.64 �C in Tibet plateau,

arid area, loess plateau, and Sichuan basin and Yunnan-

Guizhou plateau. After the downscaling process, the mean

absolute error was decreased by 67.16 % in the whole of

China and by 84.48, 75.22, and 68.6 % in Tibet plateau,

arid area, and loess plateau, respectively. The mean abso-

lute error of MAP from the original CMIP5 data was

350.52 mm. The higher errors happened in Tibet plateau,

loess plateau, and Sichuan basin and Yunnan-Guizhou
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plateau, of which the mean absolute errors are, respec-

tively, 770.51, 656.57, and 386.03 mm. The downscaling

process made the mean absolute errors decrease by

77.43 % in the whole of China and by 97.09, 91.34, and

88.53 % in Tibet plateau, arid area, and loess plateau,

respectively.

The scenarios of RCP2.6, RCP4.5, and RCP8.5 of MAT

and MAP in the period from 2006 to 2010 on spatial

resolutions of 1� 9 1� were downscaled to the ones on

spatial resolution of 1 km 9 1 km by a combination of the

method for high accuracy surface modeling (HASM) and the

statistical transfer functions (Yue 2015). The results showed

that spatial distribution of MAT errors had a strong simi-

larity under the three scenarios. Mean absolute errors of all

the three scenarios were about 2.2 �C in the whole land of

China in terms of the original CMIP5. The regions, where

the mean absolute error was bigger than 2.2 �C, included
Tibet plateau, arid area, loess plateau, and Sichuan basin and

Yunnan-Guizhou plateau. The mean absolute errors of sce-

narios of RCP2.6, RCP4.5, and RCP8.5 were about 5 �C in

Tibet plateau, 4 �C in arid area, 3 �C in loess plateau, and

3 �C in Sichuan basin and Yunnan-Guizhou plateau, re-

spectively. After the downscaling process, the mean absolute

errors of the three scenarios were reduced to about 0.6 �C in

the whole land of China, 0.7 �C in Tibet plateau, 0. 9 �C in

arid area, 1.0 �C in loess plateau, and 0. 9 �C in Sichuan

basin and Yunnan-Guizhou plateau.

A simulation system for XCO2 surfaces is being devel-

oped on the basis of HASM (simply termed as HASM

system), which takes satellite remote sensing data as its

driving field and ground observation data as its optimum

control constraints. The XCO2 surfaces from satellite re-

mote sensing are difficult to be directly used as the driving

fields because of a large number of voids caused by clouds,

aerosols, and the high surface albedo. It is necessary to

conduct void filling for constructing the HASM system. The

verification results showed that HASM always has the

highest accuracy compared with the classical methods of

(Inverse distance weighted) IDW and Ordinary Kriging

(OK), whether voids are inner ones or boundary ones, data

sets are from Japan’s Greenhouse Gases Observing Satel-

lite(GOSAT) or from The scanning imaging absorption

spectrometer for atmospheric chartography(SCIAMACHY)

on board the European Space Agency’s ENVISAT-1

satellite, and the void areas are larger or smaller (Yue et al.

2015b).

Turning to pedology, 5374 soil profiles collected during

China’s second national soil survey (1979–1994) were

taken and used as optimum control constraints in HASM to

Table 2 Comparison of errors

from different methods
Methods MAE (kg�m-2) MRE (%)

SBA (based on satellite observation information) 1.9 49

Kriging (based on local inventory information) 2.0 50

HASM-SBA (based on both local information and global information) 0.9 23

Table 3 The most important abbreviations

Abbreviation The complete words

AAT Annual accumulated temperature

AR5 The Fifth Assessment Report of the

Intergovernmental Panel on Climate Change

BC Box-Cox

CMIP5 The Coupled Model Intercomparison Project

Phase 5

GCM General Circulation Model

GOSAT Japan’s Greenhouse Gases Observing Satellite

GPP Gross primary production

GPU Graphics Processing Unit

GWR Geographically weight regression

HASM High accuracy surface modeling

HASM-AC Adjustment computation of HASM

HASM-AM Adaptive method of HASM

HASM-MG Multi-grid method of HASM

HASM-PCG Preconditioned conjugate gradient algorithm of

HASM

HASM-SBA Forest inventory data (the local information) are

combined with SBA by means of HASM

IDW Inverse distance weighted

LPJ-DGVM Lund-Potsdam-Jena dynamic global vegetation

model

MAE Mean absolute error

MAP Mean annual precipitation

MAT Mean annual temperature

MPI Message Passing Interface

MRE Mean relative error

NEE Net ecosystem exchange

OK Ordinary Kriging

OLS Ordinary least squares

RCP Representative concentration pathway

RK Regression-kriging using a generalized linear model

SBA Satellite-data-based approach

SCIAMACHY The scanning imaging absorption spectrometer for

atmospheric cartography

SK Stratified kriging

STF Statistical transfer function

SVR Support vector machine

XCO2 Column-averaged dry air mole fraction of CO2
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evaluate regression relations between soil properties and

their environmental factors as the driving fields, and to

simulate surface soil properties at a spatial resolution of

1 km 9 1 km on the national level. The validations indi-

cated that the HASM results were at least 17 % more ac-

curate compared with OK method (Li et al. 2010a, b).

HASM was once again validated in the middle part of

Jiangxi province of China, for which 150 samples were

collected in different land-cover types consisting of

woodlands, croplands, and grasslands. The performance of

HASM in simulating soil properties, such as pH, AN, C, N,

K, AI, Ca, Mg, and Zn, was evaluated by comparing the

results with three of the widely used methods of OK,

stratified kriging (SK), and regression-kriging using a

generalized linear model (RK). The evaluation demon-

strated that HASM maps of soil properties presented more

detailed and accurate maps of spatial patterns (Shi et al.

2011).

HASM has also been used to simulate the spatial dis-

tribution of grassland biomass in China by taking sampled

biomass data in grasslands as optimal control constraints

and remotely sensed imagery as a driving field. The spatial

distribution of forest biomass has also been simulated using

the Lund-Potsdam-Jena dynamic global vegetation model

(LPJ-DGVM) as the driving field and sampled forest bio-

mass as optimum control constraints (Sun 2012). The

simulation results over the last 100 years show that the

vegetation biomass of China increased slowly from 1901 to

1953, and then much faster since 1953. Total biomass

under the planned development scenario is predicted to be

0.09 Gt higher than that under a ‘‘business as usual’’ sce-

nario in 2030.

We validated the results produced, respectively, by a

satellite-data-based approach (SBA) (Piao et al. 2009) and

an inventory data-based approach (Fang et al. 2001) with

the results from fusing the two kinds of data by means of

HASM (Yue 2015). China’s national forest inventory

database from 2004 to 2008 includes 160,000 permanent

sample plots and 90,000 temporary sample plots scattered

over the land surface of China. The cross validation indi-

cated that mean absolute errors (MAEs) of the carbon stock

surfaces generated by SBA and OK are, respectively, 1.9

Fig. 1 Study areas of HASM in China
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and 2.0 kg m-2. When forest inventory data (the local in-

formation) are combined with SBA by means of HASM,

which is denoted below as HASM-SBA, MAE is decreased

to 0.9 kg m-2. The mean relative errors (MREs) of both

the global and local- information-based methods have been

reduced by at least 26 % because the local information and

global information were fused by means of HASM

(Tables 2, 3).

Conclusions

Input of HASM is conducted by taking global approximate

information (e.g., remote sensing images or simulation

results from global models) as driving fields and taking

local accurate information (e.g., ground observation data

and/or sampling data) as optimum control constraints. Its

output is the results satisfying the iteration stopping crite-

rion which is determined by application requirement for

accuracy.

In addition to the whole land of China (Yue et al. 2005,

2006, 2013b), HASM has been applied into different re-

gions on multi-scales (Fig. 1), such as Poyang Lake Basin

(Shi et al. 2009, 2011; Yue et al. 2015a), Heihe River Basin

(Wang et al. 2015), Dong-Zhi tableland (Yue et al. 2010b;

Chen et al. 2012), Taihu Lake Basin (Yue et al. 2013a),

Loess Plateau (Fan et al. 2013), Tongzhou District of

Beijing (Yue and Wang 2010), Da-Fo-Si coal mine in

Shanxi province (Yue et al. 2007). In all these applications,

HASM produced the highest accurate results when com-

pared with the classical methods. In the meanwhile, HASM

produced the highest accurate results when compared with

either global information-based methods or local informa-

tion-based approaches. However, slow computational-

speed and large memory requirement remain the limitation

of applications with huge computational work, although we

have developed the adaptive method and a multi-grid

method of HASM.

To meet the huge computational requirement of big

data, one way is to use a faster single processor computer,

but continually pursuing the fastest computer can be very

expensive and does not scale well as problem size in-

creases. The second way is to develop a fast numerical

algorithm. It has been demonstrated that PCG is the most

efficient algorithm of HASM that can be transformed into a

linear system with a symmetric positive-definite matrix. A

third possibility is to break down the computational prob-

lem into a number of smaller problems, e.g., using ad-

justment method of HASM; the smaller computational

problems can be solved simultaneously on less expensive

computers utilizing parallel computing methods.

Graphics processing units (GPUs) have become a

powerful many-core processor. The massively parallel

architecture offers high performance in many computing

applications (Galiano et al. 2012). Numerical algorithms

can be significantly accelerated if the algorithms map well

to the characteristics of the GPU (Helfenstein and Koko

2012). GPU-based parallel algorithm of PCG can consid-

erably improve the efficiency and robustness of HASM

(Yan and Yue 2012a, b). GPU implementation of PCG

algorithm for HASM is up to 12 times faster comparing

with HASM-PCG (Yan et al. 2015). However, it is not

faster enough for many applications, especially at high

temporal and spatial resolutions on the global level.

Message passing interface (MPI) is the most popular

choice in parallel computing environments on clusters of

workstations, of which version 1 was released in 1994. MPI

represents the standard adopted by most of the industries

and researchers (Swann 2002). When a parallel algorithm

is implemented in a cluster of workstations using MPI,

computational-speed can be greatly improved (Midorikawa

et al. 2005). Parallel computing with MPI on clusters of

workstations is an effective way to significantly solve the

slow computational-speed problem of HASM, especially

for huge computation of big data.
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