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Terrain Analysis

Yongxin Deng, John P. Wilson, and John C. Gallant

Digital terrain analysis seeks to construct mathematical abstractions of the terrain
surface (for example, Moore, Grayson, and Landson 1991, Florinsky 1998a) to
delineate or stratify landscapes (for example, Hammond 1964, Dikau 1989, Burrough,
Wilson, van Gaans, and Hanson 2001) and to examine or define the relationships
between the terrain surface and various biophysical processes/patterns (for example,
Moore, Gessler, Nielsen, and Peterson 1993, Franklin 1995, Beven 1997). The 
essential scientific value of these three tasks relies on three simple facts: (1) terrain
poses significant control over other biophysical elements, (2) the former is much
easier to measure than the latter; and (3) both tend to vary continuously over space
in a correlated fashion (Burrough and McDonnell 1998). The computed terrain
attributes often provide important, if not the only, clues indicating key biophysical
patterns and processes, and sometimes serve as a spatial prediction tool directly (for
example, Moore, Gessler, Nielsen, and Peterson 1993, Bell, Grigal, and Bates 2000).
These roles of terrain analysis represent a bridge from the known to the unknown,
and are often vital for resource inventory and environmental modeling, especially at
topo- (that is, hillslopes of 50–200 m in length) to meso-scales (that is, watersheds of
10–100 km2 in extent). They also point to the strong multi-disciplinary character
of many terrain analysis applications.

Terrain analysis is nonetheless different from most scientific approaches to 
the study of the biophysical environment in that it is enabled by GIS and related
computer technologies, and is supported more by digital terrain data (mostly 
gridded DEMs – digital elevation models) than by direct field observations or 
laboratory measurements of biophysical properties. Terrain analysis is quantitative,
implying high precision in terms of outputs, but these results may simultaneously
be plagued with uncertainties in terms of the relationship between terrain and 
biophysical attributes – implying the possibility of low accuracy. The common
approaches employed in soil-landscape analyses (Park, McSweeney, and Lowery 2001)
– statistical correlation (for example, Moore, Gessler, Nielsen, and Peterson 1993),
classification of terrain attributes based on pre-defined criteria (for example, Zhu
1997), and statistical clustering of terrain indices (for example, Irvin, Ventura, and

THO_C23  19/03/2007  11:29  Page 417



418 YONGXIN DENG, JOHN P. WILSON, AND JOHN C. GALLANT

Slater 1997, McBratney and Odeh 1997) – provide typical examples of how terrain
analysis results tend to be used. They all deal primarily with the probability, instead
of the certainty, that we can: (1) use knowledge of soil–landscape relationships to
infer soil conditions from terrain properties, and (2) extrapolate the relationships
to other places or interpolate them to other scales. This is fundamentally different
from conventional sciences such as chemistry in which chemical reactions can both
be reproduced and explained with certainty.

The relative ease with which terrain analysis can be performed points to numer-
ous opportunities, but implies tremendous challenges because of these inherent 
uncertainties. In other words, terrain analysis is more a science dealing with uncer-
tainty than with certainty. These uncertainties are often linked to issues such as
terrain data quality (Adkins and Merry 1994, Bolstad and Stowe 1994, Hunter and
Goodchild 1997, Krupnik 2000, Deng, Wilson, and Goodchild 2006), algorithm
reliability (Skidmore 1989, Desmet and Govers 1996a, Florinsky 1998b, Quinn, Beven,
Chevallier, and Planchon 1991), spatial scale effects (Chang and Tsai 1991, Zhang
and Montgomery 1994, Florinsky and Kuryakova 2000, Gertner, Wang, Fang, and
Angerson 2002), objects with indeterminate boundaries (Burrough and Frank 1996),
and ontological discrepancies regarding landform definitions (Hudson 1992, Zhu
1997, Burrough, Wilson, van Gaans, and Hanson 2001, Mark and Smith 2003).
They signify the intrinsic complexity of terrain-environment relationships, as well
as our relative lack of appreciation and understanding of these issues. The growth
of new terrain data sources, terrain analysis programs, and terrain-based environ-
mental models provide many new opportunities for biophysical study, although 
they should all be assessed carefully in terms of their scientific basis prior to wide-
spread deployment. They may directly lead to an increase in precision, but do not
necessarily imply a corresponding improvement in accuracy.

This chapter examines several essential aspects of terrain analysis based on the
aforementioned general vision. Under the heading “Terrain Attributes – State of
the Art” we describe terrain attributes as scale- and algorithm-dependent descriptions
of the terrain surface and related biophysical processes. Three examples are used
to identify the strengths and weaknesses of terrain-based environmental models 
and landscape stratifications in the second section, “Modeling and Synthesis.” The
third section, “Enduring Challenges,” examines the effects of spatial scale and data
quality on terrain analysis, and the final section highlights some of the developments
that are likely to occur by the 2020s.

Terrain Attributes – State of the Art

All three of the terrain analysis tasks listed at the start of this chapter rely on 
calculated terrain attributes. A distinction is generally drawn between primary attri-
butes that are computed directly from the DEM and composite attributes that involve
combinations of primary attributes (Moore, Lewis, and Gallant 1993, Florinsky
1998a, Wilson and Gallant 2000a). Elevation is unique because its computation does
not rely on other points; however, we often make assumptions about the character
of the land surface – in terms of its continuity and smoothness – to estimate eleva-
tion in a DEM using sparse source data in practice (for example, Hutchinson 1989).
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Florinsky (1998a) also distinguished local primary attributes that are calculated as
a function of their surroundings and non-local primary attributes that require the
analysis of a larger, non-local land surface area from a computational perspective.
Wilson and Burrough (1999) later explained this distinction between local versus
non-local terrain attributes in terms of the existence of local interactions between
neighboring points and “action-at-distance” forces (see Figure 23.1 for details).

Most primary attributes are calculated from the geometric derivatives of the 
terrain surface using either a second-order finite difference scheme (for example,
Skidmore 1989, Moore, Lewis, and Gallant 1993b, Florinsky 1998b) or a bivariate
interpolation function z = f(x,y) that has been fitted to the DEM (Mitasova,
Hofierka, Zlocha, and Iverson 1996). Typical examples of local primary attributes
include slope, aspect, and plan and profile curvatures; non-local primary attri-
butes include flow path length, proximity to nearest ridgeline, dispersal area, and
upslope contributing area. More complete lists can be found in Moore, Grayson,
and Ladson (1991), Moore, Lewis, and Gallant (1993b), Florinsky (1998a), and
Gallant and Wilson (2000).

By definition, the local terrain shape – which is usually thought of as the continu-
ous variation of elevation values over the terrain surface from point to point – has
an enormous impact on local terrain attributes, but this role is influenced by data
and computational factors. Florinsky (1998b) suggested that local attributes, such
as slope gradient, aspect, and curvatures, are mathematical variables rather than
real-world values. This statement may be extended to all local terrain attributes for
two reasons. First, local terrain shape can have different mathematical descriptions,
so that the calculated local attributes depend on algorithm selection. Second, the
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From Wilson and Burrough 1999
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terrain shape portrayed by DEMs is a function of scale, combining the complex-
ity of the terrain, scale or resolution of data, and spatial scale at which the terrain
surface is observed. Thus it is possible to use the same local attribute to describe
terrain shape at different scales (resolutions). The special feature of non-local primary
attributes is that they rely on the terrain shape of a larger, non-neighbor area and
need to be defined with reference to other, non-local points. Therefore, calculating
non-local attributes is more difficult because it incurs additional efforts in constructing
point-to-point connections over the landscape and involves more complex algorithms
(for example, Desmet and Govers 1996a, Gallant and Wilson 2000).

Secondary or composite attributes account for the spatial variability of biophys-
ical processes as a function of topographic effects (Moore, Grayson, and Ladson
1991). They are often used to quantify the role played by the terrain surface in
redistributing water and sediments over the landscape and in modifying the
amount of solar radiation received at various surface locations. Wilson and Gallant
(2000b), for example, described three sets of composite attributes – topographic
wetness, sediment transport capacity, and solar radiation indices – and some of the
ways they have been deployed to interpret selected hydrologic, geomorphic, and
ecological processes and patterns. The topographic wetness index (W or WT) is prob-
ably the most popular of these composite indices and is calculated using one of the
following equations depending on whether uniform soil transmissivity (T) under
saturation is assumed or not:

(23.1)

or

(23.2)

where a (m2 m−1) is the specific catchment area and β (°) is the slope gradient (Kirkby
1976, Beven and Kirkby 1979, Moore, Grayson, and Ladson 1991). Provided 
certain conditions are met (Beven and Kirkby 1979), the wetness index describes
the pattern of depth to water table in a catchment and hence the pattern of hydro-
logic response. It has frequently been used as an index of position in the landscape
and of accumulation of materials for predicting soil properties.

Modeling and Synthesis

Both primary and composite attributes are frequently used to provide input data
for various environmental models or landscape delineations based on attribute 
distributions. The outputs of these applications take the form of identified terrain–
environment relationships, spatio-temporal predictions of environmental properties,
and the delineation of meaningful spatial units over the landscape. Three examples
are utilized below to demonstrate how new knowledge may be garnered through
these modeling and synthesis activities. They also illustrate three enduring issues in
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terrain analysis: (1) the impact of the choice of spatial scale or landscape unit on
model predictions; (2) the difficulties encountered representing spatial continuity;
and (3) the problem of “equifinality.”

Soil erosion/deposition modeling

The large number and complexity of factors influencing soil erosion rates coupled
with the relative paucity of data at fine scales (that is, 5–10 meter grid cells) have
slowed soil erosion model development since the 1950s. The first proposals for 
combining soil erosion models and Geographic Information Systemns (GIS) were
published nearly two decades ago (for example, Ventura, Chrisman, Connors, Gurda,
and Martin 1988, Warren, Diersing, Thompson, and Goran 1989) and may be 
contrasted with several of the more recent models that have been implemented in
GIS environments from the outset (for example, Mitasova, Hofierka, Zlocha, and
Iverson 1996, Mitas and Mitasova 1998).

The most popular, and in many ways most important, soil erosion model up 
to this point in time is the Universal Soil Loss Equation (USLE), an empirical 
equation derived from observations of more than 10,000 plot-years on farmlands
(Wischmeier and Smith 1978; see Wilson and Lorang 1999 for a detailed review).
It incorporates six factors – rainfall–runoff, soil erodibility, slope length, slope 
gradient, crop management, and conservation practices – and calculates the mean
erosion rate (t ha−1 yr−1) by comparing the conditions of the target slope (slope 
length, gradient, erodibility, management, etc.) with a standard soil-loss plot that
is 22.13 m long and has a uniform width and slope gradient (9 percent).

This model is intrinsically limited to: (1) landscapes in which erosion is detachment
limited; (2) planar slopes (except where the special rules for irregular slopes pro-
posed by Foster and Wischmeier (1974), which divided irregular slopes into a series
of planar slope facets, are implemented); and (3) those parts of the landscape that
experience net erosion over the long term (this requirement will often exclude foot-
slopes and valley bottoms in semi-arid and humid areas for example; see Wilson and
Lorang 1999 for additional discussion of this limitation). Two reasons explain these
limits. First, the model uses the entire slope as the basic spatial unit, and does not
incorporate within-slope change in runoff direction and speed (that is, convergence,
divergence, acceleration, and deceleration). These changes are a function of surface
shape (that is, curvatures along or perpendicular to the steepest slope direction)
and they are key to the successful prediction of within-slope variation of sediment
transport processes (detachment, transport, deposition, and detainment). Second,
slopes are conceptualized as isolated spatial units, so that the impact of input sedi-
ment flow and the possibility of net deposition are not taken into account.

The topographic or length-slope factor (LS) for the USLE, originally computed as
a function of overall slope length and average slope gradient (Wischmeier and Smith
1978), is primarily responsible for the aforementioned limits of the USLE (Wilson
and Lorang 1999). Wilson (1986) proposed a way around these limits that involved
sampling slopes in watersheds and using topographic map information along with
the irregular slope estimation method of Foster and Wischmeier (1974) to generate
frequency distributions of LS for specific watersheds (that is, catchments). This method
facilitated watershed-level comparisons (for example, Wilson and Ryan 1988, Wilson
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1989) but was not able to characterize the erosion hazard at finer scales. Griffin,
Beasley, Fletcher, and Foster (1988) later generalized the topographic or length-slope
factor so that the USLE was able to estimate the soil erosion potential at specific places
(that is, points) in the landscape (so long as the original model assumptions noted
earlier held true). However, this approach greatly increased the time and effort needed
to implement the USLE and, as a consequence, it attracted little attention prior to
the widespread adoption and use of GIS for natural resource assessment.

It was therefore not surprising when Desmet and Govers (1996b) proposed a 
GIS-based method to calculate the topographic factor over a two-dimensional land-
scape that automated the approach of Griffin, Beasley, Fletcher, and Foster (1988),
although with one important modification. They utilized the upslope contributing
area in place of upslope flowpath length and then concluded that the original (that
is to say, manual) method leads to an underestimation of the erosion risk because
the effect of flow convergence is not taken into account.

Moore and Wilson (1992) had several years earlier proposed a dimensionless, unit
stream power-based sediment transport capacity index T to replace LS in certain
landscape conditions:

(23.3)

where a is the specific catchment area (m2 m−1) and β (°) is the slope gradient. Foster
(1994) criticized this approach because it relied on different assumptions (most notably
that the erosion rate is transport- rather than detachment-limited) and attempted
to modify just one of several components in this empirical model (the USLE is 
fundamentally a series of nested regression models and changing one component
may necessitate changes to one or more other components). It is clear that these
same criticisms would apply to the approach of Desmet and Govers (1996b) given
the similarities between the two methods. Moore and Wilson (1994) subsequently
acknowledged these shortcomings and went on to show that their equation pro-
duced similar results to the original USLE for certain slopes (that is, planar slopes
with lengths <100 m and gradients <14°) despite the fact their approach relied on
different assumptions to the original USLE.

Moore and Wilson (1992, 1994) also suggested calculating a second index:

∆Tcj = Φ[am
sj−(sin βj−)

n − am
sj(sin βj)

n] (23.4)

where ∆Tcj is the change in T along the flow direction over a grid cell, Φ is a 
constant, as is the specific catchment area (m2 m−1), subscript j signifies the outlet
of cell j and j- signifies the inlet to cell j, and β (°) is the slope gradient (as in Equa-
tion 23.3). They proposed using this equation to distinguish those parts of the 
landscape likely to experience net erosion (∆T > 0) from those parts likely to 
experience net deposition (∆T ≤ 0), although this would clearly only work for 
landscapes in which soil erosion is transport limited.

Mitasova, Hofierka, Zlocha, and Iverson (1996) and Mitas and Mitasova (1998)
later incorporated some of these same ideas in a soil erosion model that relied on
the solution of bivariate first principles water and sediment flow equations. These
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equations can be used to characterize the relationship between erosion/deposition
rates and terrain curvatures on slopes with varying soil and cover properties. Their
models, which incorporated detachment- as well as transport-limited conditions and
both profile and tangential curvatures, provide a sound theoretical explanation for
the results of field experiments reported by Sutherland (1991), Busacca, Cook, and
Mulla (1993), Quine, Desmet, Govers, Vandaele, and Walling (1994), and Heimsath,
Deitrich, Nishiizumi, and Finkel (1997). The highest erosion rates were observed
on divergent shoulder elements and deposition on convergent footslope elements
in the first pair of studies, whereas the maximum soil loss was observed from the
slope convexities and maximum gain in both the slope concavities and the main
thalwegs in the final two studies. These results illustrate how small variations in
terrain shape and soil and land cover can have a dramatic impact on the location
and rates of soil erosion and deposition.

This discussion of terrain analysis and soil erosion models would not be com-
plete without some mention of the Water Erosion Prediction Project (WEPP) model
(Flanagan and Nearing 1995). The tremendous progress towards physically-based
erosion models achieved within this project since at least the mid 1990s means 
that the USLE in its various forms is best suited to preliminary assessments and/or
situations where data is limited nowadays. The WEPP model can be implemented
at various levels and can predict erosion and deposition. The WEPP watershed 
model (Ascough, Baffaut, Nearing, and Liu 1997, Baffaut, Nearing, Ascough, and
Liu 1997), for example, is an extension of the WEPP hillslope model and can be
used for estimating watershed erosion and sediment yield. However, the application
of WEPP to watersheds requires that hillslopes be delineated and channels identified
(Figure 23.2). Each hillslope, represented as a rectangle in WEPP, must be assigned
a representative length, width, and slope profile (as illustrated in the third part of
Figure 23.2). Cochrane and Flanagan (1999) noted that GIS analysis using DEMs
provides a useful tool for parameterization of hillslopes, channels, and representat-
ive slope profiles for WEPP simulations and set out to describe and evaluate three
methods for integrating GIS and WEPP to facilitate watershed level applications that
are often of interest to resource managers and policy analysts. This integration is
relatively straightforward but it cannot overcome the fact that the WEPP family of
models is based on a one-dimensional sediment routing over planar hillslopes (Foster,
Flanagan, Nearing, et al. 1995) and that in many instances this approach will only
partially explain the impact of terrain shape and the spatial variability of soil and
land cover at the watershed scale (Mitas and Mitasova 1998).

Soil mapping and landform classification

Conventional soil–landscape analysis and soil mapping (Hudson 1992) are based
on a crisp conceptual model that allows a data point to belong to only one class,
and thus a sample location (such as a grid point) to fall in only one map unit. 
Soil variation only occurs across boundaries in geographic space and between the 
central concepts of prescribed soil classes in attribute space (Zhu 1997). From a
utilitarian point of view, this leads to loss of soil information because: (1) minor
deviations of local soil from the prescribed soil central concept may be known by
local soil experts but cannot be included in a crisp soil map; and (2) soil bodies
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smaller than the minimum map unit either will be ignored or combined into another
soil class (Zhu, Hudson, Burt, Lubich, and Simonson 2001).

The problems with this soil–landscape model follow from the fact that natural
soils often exist as spatial continua and natural soil boundaries only exist under
special circumstances (Burrough 1993, Burrough and Frank 1996, McBratney and
Odeh 1997, Zhu 1997). It is also debatable whether soil should always be viewed
as spatial objects or as the surrogate of aggregated soil properties, because there 
is “no agreement on what a basic or fundamental unit of soil is” (Arnold 1983).
Hence, there could be endless combinations of dynamic soil conditions (properties),
although individual soil properties are usually the major concern in applications such
as soil and water conservation, non-point source pollution control, and precision agri-
culture (for example, Burrough 1993, Indorante, et al. 1996, Berry, Delgado, Khosla,
and Pierce 2003). These two “discontinuity” and “object” problems in conventional
soil mapping often occur simultaneously and help to explain the limitations of 
knowledge-based interpretations of soil–landscape relationships (Zhu, Hudson, Burt,
Lubich, and Simonson 2001), which can be more precisely captured as correlations
between soil properties and landscape attributes (for example, Burrough 1993, Moore,
Gessler, Nielsen, and Peterson 1993, Florinsky and Kuryakova 2000).

Based on fuzzy logic, Zhu (1997, 2000), Zhu, Band, Dutton, and Nimlos (1996),
Zhu, Band, Vertessy, and Dutton (1997), and Zhu, Hudson, Burt, Lubich, and
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Simonson (2001) provided a solution for both sets of above-mentioned problems using
a soil similarity model. This approach describes local soil as a similarity vector to
prescribed soil classes (central concepts) through three steps: (1) identification of a
set of central concepts according to existing soil classifications or expert knowledge;
(2) definition of the linkages between these central concepts (or soil classes) and higher
resolution landscape properties; and (3) calculation of the similarity (for example,
values from 0 to 1) of each data point to each central concept through a comparison
of their landscape properties. The soil properties of a point can then be derived by
combining its similarity vector with the soil properties of the central concepts (Zhu,
Band, Vertessy, and Dutton 1997, Zhu, Hudson, Burt, Lubich, and Simonson 2001).
Terrain analysis offers several useful inputs for describing environmental condi-
tions and constructing the soil–landscape models in this approach (Zhu, Hudson,
Burt, Lubich, and Simonson 2001). The net effect of using terrain attributes is to
incorporate continuous spatial variations of the biophysical environment into the
output fuzzy soil classes at a higher resolution than conventional soil maps.

Soil mapping in the US, nevertheless, is a special case of natural resource invent-
ory because it has a long history and has involved large human investments to 
provide rich resources for the identification of central soil concepts. When sufficient
mapping resources and/or expert knowledge do not exist to support the central 
concepts (for example, Franklin 1995) the fuzzy k-means landform classification
method will usually provide a better solution for the continuous delineation of the
biophysical environment. This approach uses terrain attributes as input data to define
the most representative clusters of the data following an iterative, unsupervised clus-
tering procedure that can differentiate the data to a maximum extent (McBratney
and Odeh 1997, Irvin, Ventura, and Slater 1997, Burrough and McDonnell 1998,
Burrough, Wilson, van Gaans, and Hanson 2001). Class centers so defined are 
similar to central concepts in soil classification. The membership (similarity) of each
data point to each class center is defined as the attribute distance between the point
and the class center in the attribute space, which is calculated using a selected dis-
tance function (Irvin, Ventura, and Slater 1997). The biophysical meanings of fuzzy
k-means landform class centers must be post-interpreted, rather than pre-defined,
based on the terrain attributes that were used. Furthermore, some additional work
will usually be required to select the terrain attributes (and weights) that will be
used to identify the specific biophysical pattern(s) of interest.

Terrain analysis might also be used to create explicit environmental stratifications
for survey design and to provide quantitative spatial predictions of individual soil
properties. McKenzie, Gessler, Ryan, and O’Connell (2000), for example, described
a two-step stratified random sampling strategy for the Bago-Maragle study area in
New South Wales, Australia that combined geologic information (that is, published
geologic map units supported by airborne gamma radiometric remote sensing) with
the Prescott Index (which is a function of mean monthly precipitation and potential
evapotranspiration), and the topographic wetness index. A field survey of 144 selected
sample sites was then conducted and the data used for quantitative spatial prediction
of key land qualities, including soil erodibility, nutrient status, and the soil–water
regime (McKenzie and Ryan 1999). Terrain analysis variables can be used in con-
junction with these other variables (climate geology, remote sensing, etc.) to extend
point observations of individual soil properties using statistical models so long as the
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explanatory variables are easier to obtain than soil variables. Hence, Gessler (1996)
used a regression tree approach to predict solum depth in the above-mentioned 
study area, and Bell, Grigal, and Bates (2000) used a series of linear and exponential 
statistical models to predict soil organic carbon in the Cedar Creek Natural History
Area in Minnesota. Interested readers can learn more about the challenges and sub-
tleties of the statistical methods employed in these types of modeling applications
in McKenzie and Austin (1993), Gessler, Moore, McKenzie, and Ryan (1995), Gessler
(1996), and McKenzie and Ryan (1999).

TOPMODEL

The original TOPMODEL introduced by Beven and Kirkby (1979) estimates over-
land runoff by integrating a spatially variable contributing area model with a simple,
lumped soil water response (storage) model (Kirkby 1976). It defines the saturated
area on the landscape Ac as the area where:

W > ST/m − S3/m + λ (23.5)

where W is the topographic wetness index (Equation 23.1), ST is the local maximum
water storage (sum of surface interception, depression, near surface infiltration, and
subsurface storage), and m and λ are constants. Given the assumption of a time-
independent steady state rainfall rate, overland flow (qof) is estimated as:

qof = iAc (23.6)

where i is an instantaneous rainfall intensity and Ac is the saturated area calculated
with Equation 23.5.

W and Ac were the only spatial variables used in the original model. All of the
other variables – such as flow velocity, interception, infiltration, subsurface storage,
and channel routing – were treated as lumped parameters and had to be measured
or estimated. Beven (1997) discussed the equifinality problem in his critique of 
TOPMODEL and noted that many different sets of parameter values can simulate
observed data (that is, the hydrograph) almost equally well in terms of some quan-
titative goodness-to-fit measure. Beven and Binley (1992) attributed the difficulty of
finding a global optimum parameter set to the complexity of the multi-dimensional
attribute space involved in hydrological modeling that is a function of the use of
threshold parameters, intercorrelation between parameters, autocorrelation and 
heteroscedascity in the residuals, and inclusion of insensitive parameters. Beven 
(1993) and Savenije (2001) also linked this equifinality problem to scales of hydro-
logical processes and “laws,” as well as to the effects of aggregation and averaging
(lumping) across scales during modeling.

Beven and Binley (1992), Beven (1997) and Beven and Freer (2001) have advocated
using the GLUE (generalized likelihood uncertainty estimation) method to manage the
equifinality problem. This method is based on Monte Carlo simulations in which
the predictions of each parameter set realization are given a likelihood weighting
according to how well that model fits the observed data (Beven 1997). The likelihood
weights of the parameter sets can be updated when more data (that is, observations)

THO_C23  19/03/2007  11:29  Page 426



TERRAIN ANALYSIS 427

become available. With the use of the GLUE method, the uncertainty of models can
be defined more precisely and TOPMODEL applications can potentially become an
iterative process of model selection, rejection, and optimization. Approaches similar
to GLUE may see potential use in terrain analysis because the selection of terrain
attributes and terrain analysis scales is currently based on data availability and it
is likely that different combinations of scales (resolutions) and attributes (as well
as their weights) may achieve the same terrain analysis goal. The advent of finer
resolution DEMs may improve the definition of uncertainty in models using these
types of uncertainty estimation methods.

Enduring Challenges

Data quality

The key role of terrain shape in terrain analysis indicates that the distribution, instead
of the magnitude, of elevation errors should be the primary focus of DEM quality
assessments (Hunter and Goodchild 1997; Burrough and McDonnell 1998, pp. 244–7;
Heuvelink 1998; see Hutchinson, Chapter 8 of this volume, for additional discussion
of the role of shape in DEM quality assessments). However, most DEM producers
only provide aggregated error indicators (for example, RMSE or root mean squared
error) that are calculated based on more accurate elevations of a few control points
to report the mean magnitude of elevation errors over one tile (or map area) of 
the DEM. Some DEM users have utilized mutually independent sample points to
link point elevation errors to the accuracy of calculated point terrain attributes 
(for example, Isaacson and Ripple 1990, Adkins and Merry 1994, Bolstad and Stowe
1994). The reliance on isolated points in both instances precludes the assessment
of local distribution of error and the impact of these errors on terrain shape (see
Wise 2000 for an extensive review of some of the key issues here). Table 23.1 shows
that terrain shape may be severely distorted by local errors in DEMs that have 
a small RMSE and vice versa, and that the local standard deviation of errors 
calculated with a moving window is a better statistic to describe local distortions
of terrain shape, given the availability of an error surface.

The focus on point or average errors dominated error assessments provided with
DEMs of coarser resolutions (for example, 30 m or 3 arc second US Geological
Survey DEMs), which are aggregated representations of toposcale surface conditions
(that is, they are capable of identifying and characterizing 50–150 m long slopes).
This focus presents even larger problems when applied to new DEM data sources of
higher resolutions, because 10 m or finer DEMs can delineate within-slope variations
much more precisely and accurately than previous 30 m or 3 arc second DEMs.
For example, the subtle variations of landform structures on a slope (topographic
hollows or local convexities) may be contained, or hidden, in the width of one 
30 × 30 m DEM cell, but be manifest on a 10 m or finer resolution DEM. In the
meantime, a 0.2 m elevation error of one point on a 10 percent uniform slope may
cause the estimate of slope gradient to change from 10 percent to 10.7 percent on a
30 m DEM, but from 10 percent to 12 percent on a 10 m DEM, and from 10 per-
cent to 30 percent on a 1 m DEM. These two examples indicate that the emergence
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of 10 m, 5 m, or even 1 m DEMs implies more than increasing detail in terrain
surface modeling. Instead, these higher resolutions, compared to previous 30 m 
or 3 arc second ones, may represent a major shift of spatial scales incorporated in
the DEMs, thus a more imminent need to evaluate the effects of DEM error dis-
tributions. In other words, we may be simultaneously facing more precise (in terms
of horizontal resolution) and more erroneous (in terms of terrain shape) terrain 
surface depictions, given the same magnitude of RMSE of elevations reported for
these high resolution DEMs as for the previous coarser resolution ones.

New methods are needed to circumvent the unavailability of a true error surface.
Hunter and Goodchild (1997) proposed that, instead of dealing with error itself, 
we could define data or model uncertainty, or the extent to which we are uncon-
fident in the obtained results. Specifically, they suggested that a worst-case scenario 
could be identified by introducing into DEMs a set of error fields that incorporate
different degrees of spatial autocorrelation. All possible uncertainties caused by DEM
errors could only occur within a range defined by this worst case scenario. This
approach thus directs the research focus from the DEM errors themselves to the
possible effects of DEM errors. A similar approach was adopted by Ehlschlaeger,
Shortridge, and Goodchild (1997), who added a series of error surfaces with various
autocorrelation and disturbance variables to an interpolation process and generated
animated visualizations of data uncertainty with 250 realizations of interpolated
30 m DEMs (from a 3 arc second source DEM). Deng, Wilson, and Goodchild
(n.d.) argue that it is also necessary to adopt a spatially explicit view to define 
the differences between various DEM sources and suggest that a DEM difference
surface calculated from two DEMs can be used to develop spatial tools to estimate
either the DEM errors themselves or the effects of terrain shape distortion on cal-
culated terrain attributes.

Table 23.1 DEM errors, shape representation, and appropriate/inappropriate statistics
(adapted from Deng, Wilson, and Goodchild n.d.)

Scenarios 1 2 3 4

Distribution of point 2 2 2 8 8 8 0 2 4 0 8 16
elevation errors 2 2 2 8 8 8 2 0 4 8 0 16
(imagined units) 2 2 2 8 8 8 4 0 2 16 0 8

Local mean error 2 8 2 8
Local RMSE 2 8 √(20/3) √(320/3)
Error description low high low high

based on RMSE
Local standard 0 0 2/√3 8/√3

deviation of errors
Distortion of none none low high

terrain shape

Note: The word “local” refers to the 3 × 3 window shown in the four scenarios. It also implies 
that a 3 × 3 moving window can be applied to the entire area of interest to generate distributed
error statistics.
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Spatial scale

Moore, Lewis, and Gallant (1993) identified four scale-related issues in terrain 
analysis – basic element size, choice of attribute algorithms, merging of data sources,
and scale differences between model and data – that still resonate today. Indeed, two
additional issues should be added to this list given the recent emergence of numerous
high-resolution DEMs; the need to: (1) define geomorphic units at various scales; and
(2) calculate terrain attributes at appropriate scales with high-resolution data. The
DEM spatial resolution was linked to issues of data quality and modeling uncertainty
in the previous section – a fact that has been long observed (for example, Chang
and Tsai 1991, Wolock and Price 1994, Zhang and Montgomery 1994, Mitasova,
Hofierka, Zlocha, and Iverson 1996, Bian 1997, Wilson, Spangrud, Nielsen, Jacobsen,
and Tyler 1998, Hutchinson and Gallant 2000, Gertner, Wang, Fang, and Angerson
2002) but has increased in importance in recent years. All these perspectives indicate
the need to interpret the spatial scale in terrain analysis as an independent dimension
that is related to all terrain analysis practices in either an explicit or implicit manner.

The basic (spatial) element size has attracted the most attention in the study or
treatment of scale-dependencies of terrain analysis. For example, the topographic
analysis for the first applications of TOPMODEL were based on a set of uniform
areal elements that were approximately 5,500 m2 in extent and delineated by divid-
ing the basin according to flow lines, contour lines, and steepest slope lines (Beven
and Kirkby 1979). Wood, Sivapalan, Beven, and Band (1988) adopted a similar
approach based on the concept of representative elementary areas to define the 
scale effects of hydrological modeling. The consideration of landscape features (for
example, flow lines, uniform slopes, etc.) in these applications produced irregular
subdivisions that may provide a higher “actual” resolution than regular grid cells
of the same size (Florinsky 1998a).

Most of these studies have examined the effects of the selected DEM resolution
on calculated terrain attributes and modeling results given the widespread use of
gridded DEMs. Isaacson and Ripple (1990), for example, observed very low cor-
respondence between grid point slope gradient and aspect values calculated from
30 m and 3 arc second (roughly 65 × 92 m) US Geological Survey DEMs respectively.
Chang and Tsai (1991) concluded that the accuracy of the same two attributes
decreased with the increase of DEM cell size from 8 m to 80 m. Zhang and Mont-
gomery (1994), Mitasova, Hofierka, Zlocha, and Iverson (1996), and Florinsky and
Kuryakova (2000) identified threshold DEM resolutions for the modeling of soil
moisture, overland flow, and erosion processes. Florinsky and Kuryakova (2000)
interpreted the regular grid cell size, or DEM resolution, in terms of its adequacy
for the description of specific landscape properties. Various statistical measures (for
example, means, standard deviations, terrain–environment correlation coefficients,
fractal dimensions, etc.) have been used in these types of studies to characterize 
the effects of spatial scale on computed terrian attributes (for example, Florinsky
and Kuryakova 2000; see Moore, Lewis, and Gallant 1993 for a comprehensive
review).

Figure 23.3 shows that spatially aggregated statistical analysis may not suffici-
ently capture the impact of DEM resolution on calculated terrain attributes. Hence,
the effect of resolution variation varies from place to place and a simple assessment
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of attribute value change in magnitude may hide the fact that β1, β2, and β3 in 
Figure 23.3 have different topographic, as well as biophysical, meanings. A more
dramatic impact could be reasonably expected with greater change of spatial resolu-
tions and/or in more complex terrain. Therefore, a spatially explicit approach that
incorporates more complete interpretations of terrain attributes (for example, com-
bining slope gradient with aspect) may need to be developed to account for the
scale effects of terrain analysis.

Several other scale issues warrant further investigation as well. One is the potential
problem of using a single-sized neighborhood window to estimate terrain charac-
teristics. Multi-scale terrain analysis – the use of expanding neighborhood windows
to calculate and compare terrain attributes – can potentially identify threshold 
window sizes across which the attribute values change abruptly to help clarify the
meaning of different attributes and delineate natural landform boundaries. Gallant
and Dowling (2003) demonstrate a method that combines terrain attributes at 
different scales into a single multi-scale attribute to represent geomorphic objects
(valley bottoms) that occur at a range of scales.

Other key questions regarding spatial scales in terrain analysis that also require
answers include:

• How do the model and attribute scale interact with one another?
• How can the various spatial resolutions of different attributes be incorporated

into the same model according to their different process scales (or scales at work,
see Bian 1997)?

• How do different terrain analysis algorithms behave with the change of scales?

X
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A1

A2

B2

C2

554 m  

540 m  

528 m 

560 m 

C1

584 m
586 m 

2

(at 90 m)
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1

(at 30 m)

1 = (554 m – 528 m) × 100% / 30 m = 87%, 1 is the slope gradient for X at
30 m spatial resolution, pointing from A1 to A2

2 = (578 m – 560 m) × 100% / 90 m = 20%, 2 is the slope gradient for X at
90 m spatial resolution, pointing from B1 to B2

3 = (586 m – 584 m) × 100% / 150 m = 1%, 3 is the slope gradient for X at
150 m spatial resolution, pointing from C2 to C1

β
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β β
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Fig. 23.3 Scale effects of terrain analysis. Slope gradients (β1, β2, and β3) for the same point B 
(or d) are defined in different ways due to the change of spatial resolution. The resultant slope
gradients are different not only in magnitudes, but also in terms of topographic meanings
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• What modeling effects should be expected (that is to say anticipated) when com-
bining data sources that incorporate different spatial scales?

SUMMARY

We briefly reviewed several key characteristics of terrain analysis and discussed 
several emerging perspectives, including the role of fuzzy logic, equifinality, shape-
based data quality evaluations, and multi-scale terrain analysis. Several soil erosion
models were reviewed to demonstrate the importance and great difficulties that 
are encountered delineating landscape units in these types of modeling applications.
The traditional approach to soil–landscape analysis was described to portray how
digital terrain analysis, together with new methodologies such as fuzzy logic, can
improve soil classification and support a shift from crisp to continuous paradigms in
various environmental modeling domains. The guiding principles of TOPMODEL
were briefly discussed and used as an example to explain the equifinality problem and
its potential significance to terrain analysis. The limitations encountered in manag-
ing spatial scale and data quality problems were identified as enduring challenges
to terrain analysis and our ability to use computed terrain attributes to describe
environmental patterns and processes of interest.
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