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Abstract  

This chapter reviews the various flow routing algorithms that simulate the 
distribution and flow of water across landscapes. The distinguishing char-
acteristics of nine such algorithms and the experiments that have been 
conducted to evaluate their performance over the past 15 years are dis-
cussed. From there, we consider three sets of enduring challenges: (1) the 
role of scale and feedback between soil and water, and the need to consider 
these issues when characterizing the properties of both; (2) the need for 
dynamic flow routing algorithms and related indices in many landscapes; 
and (3) some of the as yet unrealized opportunities for treating space and 
time as continuous variables in the representation of soil water properties. 
The chapter concludes by noting the current state-of-the-art and where we 
might go from here. 
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1 Introduction 

A growing body of literature from the 1990s illustrates how flow routing 
measurements and related topographic attributes can be used in modelling 
key hydrologic processes controlling the spatial distribution of soil mois-
ture, runoff, and soil erosion in a simplified but realistic manner (e.g. Band 
1989, Moore et al. 1993, Abbott and Refsgaard 1996, Cluis et al. 1996, 
Maidment 1996, Da Ros and Borga 1997, Beven 1998, Storck et al. 1998). 
The identification of drainage pathways and runoff contributing areas 
based on DEMs, together with their coupling with hydrological models 
(e.g. Beven et al. 1994, Lee and Chu 1996), provides the means to param-
eterize spatially distributed, physically-based models, which themselves 
represent a major approach for incorporating spatial heterogeneity. Digital 
terrain analysis provides a quantitative and consistent approach to generat-
ing inputs for applications of these models as discussed below. 
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The elevation, slope, and aspect of an area have a strong influence on its 
microclimate due to insolation and other effects, and topography has a ma-
jor impact on the hydrological, geomorphological, and biological proc-
esses active in landscapes (Moore et al. 1993, Dymond et al. 1995, Cluis et 
al. 1996, Pickup and Chewings 1996). Geomorphometric parameters de-
rived from DEMs can be used to determine where in a watershed various 
slope processes, such as landslides and runoff, take place (Montgomery et 
al. 1998). At the local scale, primary geomorphometric parameters can be 
extracted using standard GIS tools in order to investigate morphometric in-
fluences on hydrologic variables such as overland flow depth and velocity. 
For example, the widely used hydrologic model TOPMODEL is based on 
the concept of variable source areas contributing to runoff production 
through saturated overland flow (Beven et al. 1994). Formation of the con-
tributing area is related to the topographic index ln(As/tan ), where As is 
the upslope area drained per unit contour length and  is the slope angle. 
Model inputs are the frequency distribution of ln(As/tan ), daily precipita-
tion and evapotranspiration time series, and several lumped soil and flow 
routing parameters. Model outputs include the runoff hydrograph, water 
balances, and contributing areas. Developments in hydrologic models have 
been greatly facilitated by GIS, which supports the spatial data models that 
have enabled earth scientists to construct more distributed representations 
of space than previously possible. Using GIS to parameterize such models 
has enabled their application across local, watershed, and regional scales, 
facilitating more realistic model assessment and more accurate process 
modelling. 

The strong influence of elevation and watershed morphology on precipi-
tation, water movement, and slope stability means that DEMs serve as one 
of the basic building blocks of many environmental model parameteriza-
tion efforts, and the enhancements made to flow routing measurements 
have enhanced this capacity. The increasing availability of DEMs, re-
motely-sensed data, and a dramatic increase in desktop computing power 
over the past decade have accelerated these developments, enabling re-
searchers to link their chosen process-based model(s) to a spatial database 
contained within a GIS. 

This chapter reviews the most popular flow routing algorithms and what 
is known about their performance. The choice of algorithm is critical given 
the key contribution of water distribution and flow in soil development, 
land cover, soil redistribution, and various forms of mass movement. The 
remainder of this chapter is divided into three sections. The distinguishing 
characteristics of nine such algorithms – the D8 (O’Callaghan and Mark 
1984), Rho8 (Fairfield and Leymarie 1991), FD8 (Quinn et al. 1991), Lea 
(1992), DEMON (Costa-Cabral and Burgess 1994), ANSWERS (Beasley 
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and Huggins 1978), flux decomposition (Desmet and Govers 1996), D  
(Tarboton 1997), and MFD-md (Qin et al. 2007) algorithms – are first out-
lined. We then review the continued importance of source data, interpola-
tion algorithms, and the experiments that have been conducted to evaluate 
their performance over the past 15 years in Section 3. Three groups of 
studies – those focused on inputs and/or decision rules and those focused 
on the ability of one or more of the aforementioned algorithms to repro-
duce the drainage structure or some relevant landscape properties with and 
without the assistance of field observations – are discussed. The last sec-
tion concludes by noting the current state-of-the-art and where we might 
go from here. 

2 Basic Characteristics of Flow Routing Algorithms 

The automated extraction of surface channel networks from DEMs has 
grown in popularity during the past 20 years as the availability and resolu-
tion of DEMs, as well as the quality of hydrologic modelling tools, has 
improved. Identifying channel networks and their initiation points is cen-
tral to hydrology and geomorphology because of the control exerted by 
climate, topography, soil properties, and other environmental attributes on 
surface flow paths and erosion potential within a drainage basin (Knighton 
1998). The characteristics of a channel network heavily depend on the 
identification of channel source cells from the digital landscape, and can 
greatly affect the delineation of catchments or drainage basins (Garbrecht 
et al. 2001). The closer the channels begin to the drainage divide, the 
greater the number of channels that can occupy a watershed (Montgomery 
and Dietrich 1988). DEMs generally cannot capture all topographic varia-
tions that occur within the landscape, especially if the features are finer 
than the DEM resolution, and these shortcomings may cause discrepancies 
between the precise positioning of stream channels in digital landscapes 
and the real world (Garbrecht et al. 2001). 

Flow routing algorithms have been used to predict the channel source 
cells as well as the movement of water, sediment, and nutrients to lower 
adjacent points or areas in a landscape (e.g. Desmet and Govers 1996). 
Fundamentally, a flow routing algorithm determines the way in which the 
outflow from a given cell will be distributed to one or more neighbouring 
downslope cells. The choice of flow routing algorithm is important as it af-
fects the calculation of the upslope contributing area, the prediction of 
flow accumulation, and several other topographic and hydrologic attrib-
utes. The derivation of these attributes relies on digital elevation source 
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data. Square-grid DEMs are a popular choice for flow routing due to their 
visual simplicity and ease of computer implementation (Moore et al. 1991, 
Wise 1998a, b, Wilson and Gallant 2000). All nine of the flow routing al-
gorithms discussed below utilize square-grid DEMs as their primary input 
data, and calculate flow directions and upslope contributing areas using a 3 
x 3 moving window. 

The D8 (deterministic eight-node) single-flow-direction (SFD) algo-
rithm directs flow from each grid cell to one of eight nearest neighbours 
based on slope gradient (O’Callaghan and Mark 1984). The aspect  
(measured in degrees clockwise from north) marks the direction of steepest 
descent for each grid cell or point in a catchment, and is the direction in 
which water would flow from that grid cell or point. Most implementations 
of D8 utilize the primary flow direction for water moving over the land 
surface as an approximate replacement for aspect (Moore 1996). The sim-
plest method of calculating primary flow direction is to determine the 
slope (Si) to each neighbour and set it to the direction for which Si is great-
est (Gallant and Wilson 2000). The upslope contributing area is the num-
ber of cells whose flow reaches the cell of interest multiplied by the cell 
area, while specific catchment area is the upslope contributing area divided 
by the contour width, which is assumed to equal the "width" of a grid cell. 
Some implementations of D8 utilize the grid spacing for both cardinal and 
diagonal flow assignments, while others, such as TAPES-G (Gallant and 
Wilson 1996), assume that the grid cell width is a good estimate for flow 
width in the cardinal directions and that the cell width multiplied by 2 is 
the best estimate of the flow width for flow assignments to diagonal cells. 
However, there is little theoretical or empirical evidence to support either 
option (Gallant et al. 2000). 

The Rho8 (random eight-node) SFD algorithm developed by Fairfield 
and Leymarie (1991) introduced a degree of randomness to break up the 
parallel flow paths that D8 tends to produce on planar surfaces (Wilson 
and Gallant 2000). This algorithm starts by identifying all the neighbour-
ing downslope cells, then calculates the slope gradients in each of these di-
rections, and finally extracts random numbers from a table to direct the 
flow to one of these candidate cells. The random numbers are allocated on 
a slope-weighted basis such that the potential flow paths with the steepest 
gradients have the greatest probability of being selected, and the overall 
flow pattern more or less matches the one produced with D8. The upslope 
contributing and specific catchment areas are calculated using the flow 
width and flow accumulation approaches adopted for D8; however, a dif-
ferent flow network will be produced each time the algorithm is used be-
cause of the random assignment of flow among multiple downslope cells 
(Wilson et al. 2000). 
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The FD8 multiple flow direction (MFD) algorithm developed by Quinn 
et al. (1991) directs water to every adjacent downslope cell on a slope-
weighted basis. The slope gradients, slope lengths, and two weights – 0.5 
and 0.35 for cardinal and diagonal directions, respectively – are used to di-
rect the flow from the centre cell to each downslope cell in a 3 x 3 moving 
window. Each cell receives a fraction of the discharge from each upslope 
cell, and therefore, the upslope contributing area of the receiving cell is 
typically composed of partial contributions from many different cells. Spe-
cific catchment area is calculated as the sum of the contributing areas from 
upslope cells divided by the cell width for the cardinal flow directions, and 
by the cell width multiplied by 2 for diagonal flow directions (similar to 
D8 and Rho8 in TAPES-G). The user can set a maximum cross-grading 
area threshold in the TAPES-G implementation of FD8 to switch to the D8 
algorithm. This approach means that flow dispersion will be terminated 
whenever the upslope contributing area exceeds this user-specified thresh-
old (Gallant and Wilson 1996, Wilson and Gallant 2000). 

Lea’s (1992) flow routing algorithm relies on the calculation of the as-
pect vector and a surface fitting scheme. He argued that flow moves across 
a planar surface in the direction of the steepest slope, or aspect angle , 
similar to a “rolling ball”. The approach has two parts. First, planes are 
constructed to represent the surface of each cell using estimated elevations 
at the four corners of each cell. Successively larger windows can be im-
plemented to minimize the occurrence of flat areas (i.e. surface pits). The 
aspect vector is calculated during the second step in 1° increments (in con-
trast to the 45° increments used for many implementations of D8) and is 
utilized to route flow across individual cells. Flow paths are constructed by 
the repeated application of the algorithm until the catchment outlet is 
reached or a topographic hollow prevents the continued progress of flow. 
The contributing area is calculated as the number of flow paths passing 
through that cell multiplied by the grid cell area, and an arbitrary threshold 
is utilized to dictate the number of flow paths that need to converge on a 
pixel for it to be classified as a stream path. 

The fifth algorithm called DEMON (Digital Elevation Model Network) 
was developed by Costa-Cabral and Burgess (1994) and determines flow 
direction based on the local aspect angle similar to Lea (1992). However, 
the flow generated over a cell is directed downslope over a two-
dimensional flow strip. These flow strips partition catchments into irregu-
larly shaped elements that are defined by pairs of orthogonals and equipo-
tential lines (contour lines). The width of the flow strips increases over di-
vergent topography, decreases over convergent topography, and remains 
constant over planar surfaces. The flow across each cell is the amount of 
flow entering that cell plus the flow generated by the cell itself. When flow 
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reaches an edge of a grid cell at a cardinal direction, then all flow is di-
rected to the single neighbour. In other cases, the flow is split amongst the 
cardinal neighbours. The upslope contributing area for each cell in 
DEMON is computed by successive addition of the cell areas in each 
stream tube entering every pixel in the DEM, and the specific catchment 
area is computed by dividing the upslope contributing area by the flow ma-
trix width. A modified version of DEMON is implemented in TAPES-G in 
which the nodes of the DEM define the centre of the cells instead of the 
entire cell area, and the flow direction of a stream tube is defined by the 
aspect. The upslope contributing and specific catchment areas are calcu-
lated in the same way as in the original version of DEMON in TAPES-G 
(Gallant and Wilson 2000). 

The ANSWERS (Areal Nonpoint Source Watershed Environment Re-
sponse Simulation; Beasley and Huggins 1978) non-point source pollution 
model describes the runoff, infiltration, subsurface drainage, erosion, and 
drainage across a watershed during and following single storm events. The 
watershed is divided into grid cells with parameters provided for each cell, 
and the continuity equation is used with a stage-discharge curve to calcu-
late the amount of flow that would cross each cell. The cells are split into 
two parts by a line through one of the cell corners and oriented in the as-
pect direction of the cell, and the relative proportions used to divide and 
direct the flow of water into the neighbouring downslope cardinal cells. 
This algorithm was implemented as a FORTRAN program and coupled 
with IDRISI (Eastman 1992) by Desmet and Govers (1996) as part of a 
study comparing the performance of flow routing algorithms in a small 
catchment near Flanders, Belgium. Two modifications were made to the 
original ANSWERS algorithm by Desmet and Govers (1996) to solve spe-
cific problems such that: (1) flow was assigned to just one of the two car-
dinal cells when flow was directed to grid points of equal or even higher 
height; and (2) flow was switched to the D8 steepest descent algorithm 
(i.e. the diagonal path in a 3 x 3 moving window) when both of the two re-
ceiving cells were higher than the central point. 

Desmet and Govers (1996) also proposed a new flow routing algorithm 
based on the decomposition of the flux vector. The flux vector was split 
into two ordinal components with the magnitude of each component pro-
portional to the sine or cosine of the aspect value. The magnitudes of the 
two components were normalized by dividing each by the sum of the abso-
lute values of the sine and cosine of the aspect value, and the two modifi-
cations noted above for the ANSWERS flow routing algorithm were 
adopted as a part of this algorithm as well. This algorithm splits the up-
slope contributing area between two cardinal neighbours and the calcula-
tion of specific catchment area is similar to that of D8, FD8 and Rho8 in 
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TAPES-G, where the contributing area is divided by the effective contour 
length. The major difference between the ANSWERS and flux decomposi-
tion algorithms concerns the routing of flow to the two cardinal 
neighbours. Beasley and Huggins (1978) chose to divide grid cells based 
on which cardinal neighbour received flow lines parallel to the aspect di-
rection, whereas Desmet and Govers (1996) relied on the sine and cosine 
of the aspect vector values to direct flow to these candidate cells. 

The D  algorithm proposed by Tarboton (1997) incorporates several 
ideas from DEMON to assign multiple flow directions to selected cells. 
The flow direction follows the path of steepest descent and is represented 
as a continuous angle between 0 and 2  radians. Special rules are included 
to: (1) force flat cells to drain to a neighbour that ultimately drains to a 
lower elevation; and (2) eliminate loops in the flow direction angles. Grid 
cells that are flat took flow direction from the D8 method in the original 
D  code, but the latest version uses the method of Garbrecht and Martz 
(1997) to assign flow directions in flat areas. This algorithm returns 
NODATA for flow direction in grid cells classified as pits. The upslope 
area of each cell is taken as its own area plus the fractional areas of up-
slope neighbours that drain into the cell of interest, similar to FD8 and 
DEMON. If the angle falls on a cardinal or diagonal direction, then the 
flow from each cell drains to one neighbour. If the flow direction falls be-
tween the direct angles to two adjacent neighbours, the flow is apportioned 
between the two cells according to how close the flow direction angle is to 
the direct angle for those cells. 

The final MFD-md algorithm proposed by Qin et al. (2007) utilizes lo-
cal topographic conditions to partition the flow between downslope 
neighbouring cells. This algorithm modifies the flow partition approach of 
Quinn et al. (1991) by utilizing the maximum downslope gradient to 
model the impact of local terrain on the flow partitioning predicted at each 
cell. The maximum slope gradient was chosen for inclusion in this algo-
rithm over the minimum and mean downslope gradients because: (1) it is 
less sensitive to variations in DEM error; and (2) the new algorithm will 
behave like D8 in steep terrain (Qin et al. 2007). The MFD-md flow parti-
tioning scheme uses an exponent that takes values between 1.1 and 10 to 
model divergent (small flow partition exponent values) and convergent 
flow (large exponent values) across the landscape (similar to the schemes 
proposed by Freeman 1991, Holmgren 1994, and Quinn et al. 1995). 

This proliferation of flow routing algorithms raises an important ques-
tion; namely, whether one or more of these algorithms performs better than 
the others in specific landscapes and/or applications. Figure 1 builds on the 
approach of Qin et al. (2007) and shows the routing of flow from the cen-
tre cells in three hypothetical DEMs to one or more downslope neighbours 
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for the nine aforementioned flow routing algorithms. These relatively sim-
ple examples show how different flow routing algorithms can generate 
substantially different estimates of upslope contributing area and related 
attributes (specific catchment area, topographic wetness index, etc.). The 
major findings from published studies comparing the performance of two 
or more of these flow routing algorithms are taken up and discussed in 
more detail below. 
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Figure 1. Flow partitioning schemes for nine flow routing algorithms and the 
three sample DEMs. 
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Figure 1. (Continued)
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3 Comparisons of Flow Routing Algorithms 

The evaluation of flow routing algorithm performance is tricky because of 
the importance of the underlying source data and the difficulty of separat-
ing the impact of the flow routing algorithms from that of the underlying 
data when reviewing their performance. The elevation data may take one 
of three forms (square-grid, triangulated irregular, and contour-based net-
works) although the proliferation of digital elevation sources and preproc-
essing tools means that the initial choice of data structure is not as critical 
as it once was (Kemp, 1997a, b). Numerous methods have been proposed 
to convert digital elevation data from one structure to another, but care 
must still be exercised with each of these methods to minimize unwanted 
artefacts (e.g. Krajewski and Gibbs 1994). 

Hutchinson (2007) recently documented a 20-year trend of shifting spa-
tial scales – from continental and regional scales (e.g. major drainage divi-
sions), to the mesoscale (e.g. surface climate), and then to the toposcale 
(e.g. soil properties) – in hydro-ecological applications of topographic 
data. These scale transitions have mirrored advances in DEM resolutions 
and improvements in representing local terrain shape and structures. This 
focus on local details has allowed landforms and hydrological patterns to 
be differentiated within small watersheds (e.g. 1–100 km2 in size) and hill-
slopes (e.g. 100–1,000 m in length). However, larger quantities of data do 
not necessarily produce better results: Eklundh and Martensson (1995), for 
example, used ANUDEM (Hutchinson 1989) to derive square grids from 
contours and demonstrated that point sampling produces faster and more 
accurate square-grid DEMs than the digitizing of contours. Similarly, Wil-
son et al. (1998) used ANUDEM to derive square grids from irregular 
point samples and showed that many of the x, y, z data points acquired 
with a truck-mounted GPS were not required to produce satisfactory 
square-grid DEMs. ANUDEM calculates ridge and streamlines from 
points of maximum local curvature on contour lines and incorporates a 
drainage enforcement algorithm that automatically removes spurious sinks 
or pits in the fitted elevation surface (Hutchinson 1989). ANUDEM is one 
of several programs of this type (see Maidment 1996 and Hellweger 1996 
for other examples) that modify a DEM to reflect known hydrology, and 
there are many other methods that have been proposed over the years to 
automatically extract drainage networks and ridgelines from digital eleva-
tion data (e.g. Qian et al. 1990, Smith et al. 1990).   

This proliferation of digital elevation data sources and preprocessing 
tools is to some extent problematic given the task at hand. Carrara et al. 
(1997), for example, compared several methods for generating DEMs from 
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contour lines and concluded that the range of terrain types, sample struc-
tures, and modelling routines is so great that attempts to make generaliza-
tions about "best" models is tremendously difficult. Similarly, Callow et 
al. (2007), for example, examined three different algorithms that modify a 
DEM to reflect known hydrology and showed that these methods perma-
nently altered the source DEM and a variety of computed topographic at-
tributes. Some of the interpolation methods that have been proposed are 
difficult to use and as a consequence Eklundh and Martensson (1995) rec-
ommended that less experienced users focus on the quality of the input 
data instead of learning sophisticated interpolation methods. Simpler inter-
polation methods will give satisfactory results so long as the input data are 
well sampled and sophisticated algorithms are likely to produce unsatisfac-
tory results if applied to poor data (e.g. Wilson et al. 1998).   

It is perhaps not surprising given this background that many modellers 
accept the DEMs they work with uncritically despite an ever-increasing 
literature describing the causes of systematic and random errors in DEMs, 
and their effects on morphometric and hydrologic parameter estimation 
(e.g. Lagacherie et al. 1996, Lopez 1997, Murillo and Hunter 1997, Wise 
1998a, b). If undetected and uncorrected they may propagate into the proc-
ess models they are used to parameterize, causing considerable uncertainty 
in the reliability of their simulations. Small errors in elevation or strange 
behaviour by an interpolator can produce large errors in surface derivatives 
such as gradient, and topographic surfaces used to define boundary condi-
tions in environmental modelling applications will contain error (Desmet 
1997, Liu and Jezek 1999).  

Numerous studies have attempted to evaluate the performance of two or 
more flow routing algorithms notwithstanding the complications intro-
duced by the choice of source data and/or interpolator and the presence of 
systematic and/or random errors. These studies can be grouped into three 
sets and their results are discussed in some detail below. The first two 
studies have examined the sensitivity of flow routing predictions to one or 
more of the decision rules embedded in the chosen flow routing algo-
rithms. 

Wilson et al. (2000) examined the effect of DEM source, grid resolu-
tion, and choice of flow routing algorithm on three primary and two sec-
ondary topographic attributes for a large forested catchment in southwest 
Montana. The comparisons showed that the D8 and Rho8 SFD algorithms 
initiated flow from 30–40% of the cells and produced much higher propor-
tions of cells with small upslope contributing areas compared to the FD8 
and DEMON MFD algorithms. The results also showed that the choice of 
cross-grading area threshold, which is utilized in TAPES-G to switch from 
FD8 to D8, produced very small differences (<5%) in upslope contributing 
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and specific catchment area values. Overall, the results showed that the 
two MFD algorithms agreed with each other in 71% of the grid cells and 
that the other algorithms agreed with each other in 49–57% of the pairwise 
comparisons. 

Chirico et al. (2005) evaluated several different methods for defining 
flow width on grids when computing SCA in the second study. Five ap-
proaches – D8 with flow width equal to grid size regardless of cell flow di-
rection; modified D8 (D8_v1) with flow width equal to grid size for cardi-
nal flow directions and grid size times 2 for diagonal flow directions; 
modified D8 (D8_v2) with flow width equal to grid size for cardinal flow 
directions and grid size times 1 2 for diagonal flow directions; D  with 
flow width equal to grid size regardless of cell flow direction; and modi-
fied D  (D _v1) with flow width varying as a function of flow direction – 
were tested on sloping planes, inward and outward cones and then com-
pared with theoretical SCA values. Two dimensionless parameters – the 
global resolution, defined as the ratio of a characteristic length of the study 
area to the grid size, and the upslope area resolution, defined as the ratio of 
the local theoretical SCA to the grid size – were used to evaluate the per-
formance of the five approaches. The results, cast in terms of the pattern of 
errors (i.e. absolute bias, mean absolute error, and local relative error) 
across different grid sizes indicated that D8 and D  performed better than 
the modified D8 and D  algorithms in calculating SCAs. 

The second group of studies comparing the performance of two or more 
of the flow routing algorithms examined their ability to reproduce the 
drainage structure and/or some other topographic attribute. Desmet and 
Govers (1996), for example, evaluated six flow routing algorithms in terms 
of their ability to: (1) reproduce the main structure of the catchment; and 
(2) predict the location of ephemeral gullies. The D8 and Rho8 SFD rout-
ing algorithms produced different spatial and statistical patterns from each 
other and two pairs of MFD algorithms – the MFD algorithms of Quinn et 
al. (1991) and Freeman (1991), both of which allocate flow to up to eight 
neighbouring cells, and the ANSWERS (Beasley and Huggins 1978) and 
flux decomposition (Desmet and Govers 1996) algorithms, which allocate 
flow to one or two downslope neighbours – for their small study site in 
Flanders, Belgium. The MFD algorithms produced much smoother images 
compared to the SFD algorithms (similar to Wolock and McCabe 1995) 
and taken as a whole, Desmet and Govers (1996) favoured the two algo-
rithms that allowed flow to only one or two downslope neighbours because 
they (visually) produced a stronger correlation with the main drainage 
lines. The main structure of the catchment (i.e. the interfluves and main 
drainage lines) was identified by all six flow direction algorithms and most 
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of the variability occurred in higher elevation areas (based on the maps re-
produced in the manuscript).  

Desmet and Govers (1996) also examined the effect of the choice of 
flow direction algorithm on the prediction of ephemeral gullies identified 
using the methodology of Moore et al. (1988). Their results showed that 
the MFD algorithms were able to identify areas where ephemeral gully 
erosion is likely, but they could not predict the precise location of the gul-
lies (which never exceeded half the width of the grid cells for this particu-
lar study area). The SFD algorithms predicted ephemeral gullies to start 
higher on the slopes but the correspondence with observed patterns was er-
ratic because these algorithms were very sensitive to small elevation er-
rors. 

Zhou and Liu (2002) computed "true" SCAs for ellipsoid, inverse ellip-
soid, saddle, and planar simulated surfaces and compared these values to 
the SCAs derived from the D8, Rho8, Freeman (1991), DEMON, and D  
flow routing algorithms. The accuracy and spatial distribution of residuals 
were also analysed by calculating the Root Mean Square Error, mean error, 
and standard deviation. They found that DEMON generated the lowest 
randomly distributed error values across all surfaces. Qin et al. (2007) used 
the same simulated surfaces and statistics to compare the performance of 
their new MFD-md algorithm with D8 and a derivative of the MFD algo-
rithm of Quinn et al. (1991). Their results showed that MFD-md produced 
the lowest error amongst the three algorithms across all four simulated sur-
faces. 

Wilson et al. (2007) compared the performance of pairs of SCA grids 
computed from five flow routing algorithms (D8, Rho8, FD8, DEMON, 
and D ) across six user-defined fuzzy landscape classes. Table 1a lists the 
basic SCA statistics by flow routing algorithm. The minimum values var-
ied because different rules were used to direct flow from each source cell 
to one or more adjacent downslope cells. The maximum values are similar 
because they represent watershed outlets at the coast. The mean values 
varied from a low of 3,429 m2m-1 (DEMON) to a high of 4,356 m2m-1 
(FD8), a difference of 27%. Table 1b partitions SCA into a series of 
classes and indicates the percentage of cells for each flow routing algo-
rithm that was assigned to each class. These results show that D8 and 
Rho8, and to a lesser extent D , have many more "low flow" cells (i.e. 
SCA  10 m2 m-1). The same pattern is repeated for the second class al-
though the magnitude of the differences is reduced. The largest number of 
cells in classes 3 through 6 was generated with different flow routing algo-
rithms – D  for class 3, DEMON for class 4, and FD8 for the fifth and 
sixth classes – although the differences are relatively small. 
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Table 1. (a) Specific catchment area (m2 m-1) statistics for study area, and (b) per-
centage of cells per specific catchment area class. 

(a) Number of 
cells Minimum Maximum Mean Standard 

Deviation 
D8 1,263,296 7.07 2237670.25 3715.27 60584.28 
Rho8 1,263,296 7.07 2236030.25 3714.18 60469.64 
D  1,263,296 10.00 2236762.00 3934.18 61469.07 
FD8 1,263,296 2.56 2341777.00 4355.83 69911.69 
DEMON 1,263,296 7.07 2214353.00 3428.91 55657.18 
 
(b) SCA Classes (m2m-1) 
  1 

( 10.0) 
2 

(10.1-
20) 

3 
(20.1-

40) 

4 
(40.1-

70) 

5 
(70.1-
100) 

6 
(100.1-
1000) 

7 
(>1000) 

D8 12.8 18.5 26.9 16.3 7.2 13.3 5.1 
Rho8 13.4 21.6 25.0 14.3 6.7 14.0 5.1 
D  7.6 12.9 29.9 20.1 7.9 16.0 5.7 
FD8 4.5 12.1 24.5 20.7 10.0 23.2 5.2 
DEMON 2.7 12.2 29.3 23.6 9.6 17.6 5.0 
 

Table 2 summarizes several noteworthy features about the distribution 
of low flow cells predicted with the five flow algorithms across the six 
landscape classes. First, the number of low flow cells predicted with the 
five flow routing algorithms varied from 169,171 (Rho8) to 33,756 
(DEMON). Second, the percentage of low flow cells in the hill-
top/ridgeline class varied by a factor of five, from a low of 9% for 
DEMON to a high of 45% for D8. In general, these percentages indicate 
the presence of a series of broad hilltops and ridgelines in the study area. 
Third, Rho8 predicted > 5,000 low flow cells in five of the six landscapes 
and D8 predicted > 5,000 low flow cells for steep north-facing slopes. Nei-
ther of these results is realistic. Overall, the results show that D , FD8, 
and DEMON performed better than D8 and especially Rho8 – the latter al-
gorithm, in particular, had large numbers of low flow cells scattered across 
most of the fuzzy k-means landscape classes – and that the algorithms pro-
duced different results in different parts of the catchment. 

The final pair of studies that comprise the third group are noteworthy 
because they compared the performance of the flow routing algorithms to 
observations of soil wetness and overland flowpaths. Fried et al. (2000) es-
timated the topographic wetness index with four flow routing approaches 
(static D8 and DEMON, as described in the previous section, and two 
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quasi-dynamic versions of D8, one with dynamic uniform soils and the 
other with dynamic variable soils) and evaluated the resultant models us-
ing field data collected during a post-storm event GPS survey of ponded 
storm flow accumulations and concentrated storm flow discharge sites for 
a small first-order catchment in Michigan. The results showed that the 
quasi-dynamic versions of D8 calculated with DYNWET (Barling et al. 
1994; see next section for additional discussion of this approach) per-
formed best and that the areas of greatest disagreement were relatively flat, 
lending credence to the conventional wisdom that flowpath determination 
by any method is especially challenging in areas of low relief (see Callow 
et al. (2007) for additional insights). 

Table 2. Distribution of source cells (SCA  10 m2m-1) by landscape class. 

Percentage of Cells with SCA  10 m2m-1 Topo-climatic 
Class 

Number of 
Cells D8 Rho8 D  FD8 DEMON 

114,186 79,789 64,966 39,215 23,583 Hilltops/ 
ridgelines 256,012 

(44.6%) (31.2%) (25.4%) (15.3%) (9.2%) 

1,686 25,568 481 107 91 Steep south-
facing slopes 323,989 

(0.5%) (7.9%) (0.1%) (0.0%) (0.0%) 

5,630 18,584 331 72 86 Steep north-
facing slopes 231,180 

(2.4%) (8.0%) (0.1%) (0.0%) (0.0%) 

37 8,245 175 15 9 Moderately 
steep lower 
valley slopes 

169,173 
(0.0%) (4.9%) (0.1%) (0.0%) (0.0%) 

39,893 36,526 28,995 16,709 9,960 Coastal plains 
/gentle slopes 177,787 

(22.4%) (20.5%) (16.3%) (9.4%) (5.6%) 

35 459 94 62 27 Stream 
channels 103,888 

(0.0%) (0.4%) (0.1%) (0.1%) (0.0%) 

161,467 169,171 95,042 56,180 33,756 
Total Area 1,262,029 

(12.8%) (13.4%) (7.5%) (4.5%) (2.7%) 
 

Endreny and Woods (2003) compared the spatial congruence of ob-
served overland flow paths with those delineated using the D8, FD8, 2D-
Lea, 2D-Jensen (Jensen 1996), and D  algorithms on agricultural hill-
slopes in New Jersey. Four new algorithms were created to determine 
whether the congruence between observed and simulated flow networks 
improved with changes in the method for allocating flow about the path of 
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steepest descent. D8-buf allowed flow to disperse into all adjacent 
downslope cells inside a user-specified buffer; D8-2x allowed flow to be 
split between two downslope cells at the source pixel and then each flow 
path followed the path of steepest descent; whereas MF(5) and MF(3) con-
strained the eight possible flow paths available in the FD8 algorithm to the 
five and three adjacent downslope cells with the steepest gradients, respec-
tively. The results suggest using flow routing algorithms that disperse flow 
to two or three neighbouring cells when routing runoff across the land-
scape. The favoured algorithms included D8-buf and MF(3) along with the 
more sophisticated 2D-Lea, 2D-Jenson, and D  algorithms since all five 
of these algorithms produced the best spatial congruence and kept the 
commission and omission errors at very low levels. 

4 Discussion and Conclusions 

It is clear from the aforementioned evaluations that the nine flow routing 
algorithms produce different results from one another and that the differ-
ences can be expected to vary in different parts of the landscape. The nine 
algorithms take different approaches to fitting a surface to the square-grid 
DEMs and in terms of the rationale and number of cells to which flow is 
apportioned. These algorithms all treat flow routing as a function of the to-
pographic surface despite the likelihood that this is only true in a series of 
relatively rare special cases (i.e. when a land surface is impermeable). The 
evaluations are noteworthy in that only two studies compared the perform-
ance of these algorithms to observations. Both of these studies relied on 
visual (i.e. qualitative) assessments and recommended using specific algo-
rithms based on “goodness-of-fit” without resort to any theory or knowl-
edge of the soil water relationships that help to direct runoff across the 
landscape. This is a fundamental shortcoming because the successful de-
ployment of these flow routing algorithms in watershed modelling applica-
tions depends ultimately on the amount of spatial variability they are able 
to reliably measure or account for (Western et al. 1999). 

Various authors have identified the influence of interpolation errors in 
DEMs and their propagation through the computation of flowpaths and to-
pographic indices to model output (Desmet 1997, Heuvelink and Good-
child 1998, Holmes et al. 2000, McMaster 2002, Van Niel et al. 2004). 
However, while terrain and errors in modelled terrain play an important 
role in the spatial distribution of surface processes, the spatial patterns of 
these processes may vary substantially because of the variability of soil 
and land cover characteristics. Mitas and Mitasova (1998), for example, 
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found that borders between different land cover types (e.g. bare soil and 
dense grass) caused abrupt changes in flow velocities as well as in trans-
port and detachment capacities, creating effects important for erosion pre-
vention. Management actions may also modify flowpaths since cross-slope 
furrows tend to channel overland flow directly into concavities, leading to 
significant flow convergence at points upslope of those that would be iden-
tified on the grounds of topography alone (Brown and Quine 1999). There 
is clearly a need to consider the spatial variability of numerous factors in 
addition to terrain shape, as illustrated by the example below. 

Zhu and Mackay (2001) investigated the effect of using detailed SoLIM 
spatial soil data in place of traditional soil map data as an input to both 
lumped and spatially distributed runs of the RHESSys model (Tague and 
Band 2001). RHESSys is designed to represent surface soil, topographic, 
and vegetation patterns along with certain hydro-ecological processes at 
the landscape level, so that the necessary parameters can be realistically 
estimated to reproduce the dominant patterns of hydro-ecological dynam-
ics (e.g. surface runoff, evapotranspiration, canopy photosynthesis) over 
the landscape (Band et al. 1993). The SoLIM result map described the spa-
tial variation of hydraulic conductivity by identifying contrasts between 
north and south facing slopes, and between high and low elevations due to 
the level of soil profile development, thereby providing details that were 
not visible on traditional soil maps. 

The implications of ineffective representation of the spatial details of 
soil depth and hydraulic conductivity were highlighted when Zhu and 
Mackay (2001) ran various hydro-ecological models within RHESSys us-
ing the detailed (SoLIM) and conventional soil data as input. Underestima-
tion of solum depth using the traditional soil map led to the soils respond-
ing quickly and abruptly to precipitation events, producing a rapidly 
changing and generally unrealistic hydrograph. The soil profile was thus 
predicted to saturate with less precipitation, while overestimation of hy-
draulic conductivity simulated water to move too rapidly through the soil 
column. In the SoLIM scheme, however, soil conditions on side slopes and 
their deviation from the dominant soil type were considered in model 
parameterization, and as a result the peaks of the simulated hydrograph 
were lower and more sensibly characterized the hydrologic response. In-
terestingly, the simulated streamflow between the two different soil land-
scape parameterization schemes was small under the distributed approach. 
Zhu and Mackay (2001) argue this is due to local variation of soil proper-
ties (solum depth and hydraulic conductivity) being expressed by the de-
tailed description of other landscape parameters in the distributed ap-
proach, particularly the spatial covariation of local topography (elevation 
and slope gradient) and drainage area on a hillslope. 
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The spatial variability of soil and land cover characteristics is important 
because the location and extent of variable source areas is determined by 
the antecedent soil water content and its spatial distribution within the 
catchment in many environments (e.g. Walter et al. 2007). We therefore 
need to be able to characterize the spatial variability of soil water content 
in a simple, yet physically realistic way to generate meaningful hydrologic 
predictions at the catchment scale (Moore et al. 1993). Most models and 
applications rely on the topographic wetness index (ln(As/tan )) to charac-
terize the soil water distribution, although this form of the wetness index 
will only serve as a good predictor of soil water content if the drainage 
flux has reached steady state (i.e. if every point is experiencing drainage 
from its entire upslope contributing area) (Barling et al. 1994). 

This last assumption is not true in many watersheds for at least part of 
the year because the velocity of subsurface flow is so small that most 
points in a catchment only receive contributions from a small part of their 
total upslope contributing area and the subsurface flow regime is in a state 
of dynamic non-equilibrium. Barling et al. (1994) proposed a quasi-
dynamic wetness index (ln(Ae/tan )), where Ae is the effective specific 
catchment area and  is the slope angle, and showed that this approach was 
a better predictor of soil water content for a small catchment near Wagga 
Wagga in New South Wales, Australia. This approach, which requires the 
user to specify drainage times and two soil properties (saturated hydraulic 
conductivity and drainable porosity), is novel because they considered soil 
properties in addition to the shape of the topographic surface. 

More work along these lines is needed because hydrologic applications 
utilize flow routing algorithms to connect the precipitation falling on the 
land surface with the hydrologic response of the catchment. This work will 
require a greater investment in fieldwork and data modelling than is evi-
dent from the flow routing papers published during the past two decades. 
We need better data models to get the runoff from the land surface to the 
stream networks (see Kim and Lee 2004 for one such example) and most 
important of all, we will need field observations in a variety of landscape 
settings to improve our characterization of the role of topography, soil, and 
land cover in shaping the hydrologic response of catchments. 
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