The Handbook of Geographic Information Science

Blackwell Companions to Geography

Blackwell Companions to Geography is a blue-chip, comprehensive series covering each major subdiscipline of human geography in detail. Edited and contributed to by the disciplines' leading authorities each book provides the most up to date and authoritative syntheses available in its field. The overviews provided in each Companion will be an indispensable introduction to the field for students of all levels, while the cutting-edge, critical direction will engage students, teachers, and practitioners alike.

Published

1. A Companion to the City Edited by Gary Bridge and Sophie Watson

2. A Companion to Economic Geography Edited by Eric Sheppard and Trevor J. Barnes

3. A Companion to Political Geography Edited by John Agnew, Katharyne Mitchell, and Gerard Toal (Gearoid O Tuathail)

4. A Companion to Cultural Geography Edited by James S. Duncan, Nuala C. Johnson, and Richard H. Schein

5. A Companion to Tourism Edited by Alan A. Lew, C. Michael Hall, and Allan M. Williams

> 6. A Companion to Feminist Geography Edited by Lise Nelson and Joni Seager

7. The Handbook of Geographic Information Science Edited by John P. Wilson and A. Stewart Fotheringham

The Handbook of Geographic Information Science

Edited by

John P. Wilson and A. Stewart Fotheringham

© 2008 by Blackwell Publishing Ltd

BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148-5020, USA 9600 Garsington Road, Oxford OX4 2DQ, UK 550 Swanston Street, Carlton, Victoria 3053, Australia

The right of John P. Wilson and A. Stewart Fotheringham to be identified as the Authors of the Editorial Material in this Work has been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher.

First published 2008 by Blackwell Publishing Ltd

1 2008

Library of Congress Cataloging-in-Publication Data

The handbook of geographic information science / edited by John P. Wilson and A. Stewart Fotheringham.

p. cm. — (Blackwell companions to geography)

Includes bibliographical references and index.

ISBN 978-1-4051-0795-2 (hardback : alk. paper) — ISBN 978-1-4051-0796-9 (pbk. : alk. paper) 1. Geography—Data processing. 2. Geographic information systems. I. Wilson, John P. (John Peter), 1955- II. Fotheringham, A. Stewart.

G70.2.H356 2008 910.285—dc22

2007008297

A catalogue record for this title is available from the British Library.

Set in 10/12pt Sabon by Graphicraft Limited, Hong Kong Printed and bound in Singapore by Utopia Press Pte Ltd

The publisher's policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards.

For further information on Blackwell Publishing, visit our website: www.blackwellpublishing.com

Contents

List of Figures List of Contributors		viii xiv	
	Geo	ographic Information Science: An Introduction	1
Part I	Dat	ta Issues	9
	1	The Availability of Geographic Data: The Current Technical and Institutional Environment David J. Cowen	11
	2	Social Data David J. Martin	35
	3	Remote Sensing Brian G. Lees	49
	4	Spatialization André Skupin and Sara I. Fabrikant	61
	5	Uncertainty in Spatial Databases Ashley Morris	80
	6	On the Identification of Uncertainties in Spatial Data and Their Quantification with Probability Distribution Functions James D. Brown and Gerald B. M. Heuvelink	94
Part II	Dat	tabase Trends and Challenges	109
	7	Object-Oriented Database Management Systems Shashi Shekhar and Ranga Raju Vatsavai	111
	8	Adding the Z Dimension <i>Michael F. Hutchinson</i>	144

	9	Adding Time into Geographic Information System Databases <i>May Yuan</i>	169
	10	Geospatial Data Integration Craig A. Knoblock and Cyrus Shahabi	185
Part III	Vis 11	ualization Mapping in a Digital Age <i>William E. Cartwright</i>	197 199
	12	Generalization of Spatial Databases <i>William A. Mackaness</i>	222
	13	Geographic Information Systems and Surfaces Nicholas J. Tate, Peter F. Fisher, and David J. Martin	239
	14	Fuzzy Classification and Mapping <i>Vincent B. Robinson</i>	259
	15	Rule-Based Mapping A-Xing Zhu	273
	16	Multivariate Geovisualization Mark Gahegan	292
	17	Virtual Reality in Geographic Information Systems <i>Michael Batty</i>	317
Part IV	Kno 18	Division Service States Service States Service States Service States State States States Sta	335 337
	19	Geographic Data Mining and Knowledge Discovery <i>Harvey J. Miller</i>	352
	20	The Geospatial Semantic Web Frederico Fonseca	367
Part V	Spa 21	atial Analysis Overtiative Methods and Coographic Information	377
	21	Systems Martin E. Charlton	379
	22	Spatial Cluster Analysis Geoffrey M. Jacquez	395
	23	Terrain Analysis Yongxin Deng, John P. Wilson, and John C. Gallant	417
	24	Dynamic Modeling Jo <i>chen Albrecht</i>	436

		CONTENTS	vii
Part VI	Geo 25	graphic Information Systems and Society Institutional Geographic Information Systems and	447
		Geographic Information Partnering David L. Tulloch	449
	26	Participatory Geographic Information Systems Daniel Weiner and Trevor M. Harris	466
	27	Geographic Information Systems and Participatory Decision Making Piotr Jankowski and Timothy L. Nyerges	481
	28	Surveys of People and Place Peter H. Dana	494
	29	Geographic Information Science, Personal Privacy, and the Law George C. H. Cho	519
	30	Geographic Information Systems in Education <i>Joseph J. Kerski</i>	540
Part VII	Fut	ure Trends and Challenges	557
	31	Web-based Geographic Information Systems Christopher B. Jones and Ross S. Purves	559
	32	Location-based Services and Geographic Information Systems <i>Allan J. Brimicombe</i>	581
	33	Geographic Information Science: The Grand Challenges <i>Michael F. Goodchild</i>	596
	34	Geographic Information Science: Where Next? Andreas Reuter and Alexander Zipf	609
Index			620

Figures

0.1	Geographic Information Science (GISc): An Overview	2
1.1	Geographic data marketplace	13
1.2	Data flow to and from government	16
1.3	Fundamental issues in spatial data transfer	18
1.4	The Spatial Data Transfer Standard	18
1.5	Content standard for digital geospatial metadata	22
1.6	FGDC decision tree	23
1.7	FGDC steps to create a clearinghouse	24
1.8	Geospatial One-Stop	26
1.9	US Fish and Wildlife Service Wetlands Mapper	27
1.10	The National Map	28
1.11	The National Map Seamless Data Distribution System Viewer	29
1.12	The National Atlas	31
1.13	The Geography Network	32
2.1	Comparison of principal social data sources	38
3.1	Some typical platforms and instrument packages	50
4.1	Census-based visualization of trajectories of Texas counties	65
4.2	Cases of convergence and divergence in a spatialization of	
	Texas county trajectories	65
4.3	Scatter plots derived from demographic data for US states	66
4.4	Spatializations derived from 32 demographic variables	66
4.5	Portion of a spatialization of conference abstracts	69
4.6	Procedure for deriving a spatialization from AAG conference	
	abstracts	70
4.7	Conference abstract as unstructured text	71
4.8	Conference abstract in semi-structured form as part of	
	an XML file	71
4.9	Application of spring model layout and pathfinder network scaling	73
4.10	The tree map method	74
4.11	Use of GIS in implementing scale-dependent spatialization	74

	FIGURES	ix
5.1	Case in which the points are stored in the database and	
5.2	connected in order from the last point back to the first point	84
3.2	case in which the segments between the points are connected	01
71	Evolution of databases	0 4 112
7.1	Evolution of databases	112
7.2	Census blocks with boundary ID:1030	115
1.5	attributes	115
74	Three layer architecture	110
7.4	An OCIS proposal for building blocks of spatial geometry	110
7.5	in UML notation	119
76	The buffer of a river and points within and outside the	11/
/.0	resultant buffer	135
81	Contour point elevation and streamline data	148
8.2	Minimum curvature gridding of point elevation data with	110
0.2	spurious sinks or depressions	153
8.3	Spurious sinks removed from the surface in Figure 8.2 by the	155
0.0	drainage enforcement algorithm	154
8.4	Contours and inferred stream lines and ridge lines derived	101
	by the ANUDEM procedure	1.5.5
8.5	Plot of root mean square slope of a DEM versus DEM resolution	156
8.6	Spline model of annual mean precipitation over topography	161
9.1	Examples of representations of temporal information in a	
	relational data model	174
9.2	Examples of representations of spatio-temporal information in	
	a GIS environment	175
9.3	A conceptual framework for a three-domain model	177
10.1	A wrapper converts the New York State Property Database into	
	structured data that can then be integrated with other sources	187
10.2	Automatic conflation of vector data with imagery	189
10.3	Integrating and reasoning about the property tax data,	
	satellite imagery, and road vector data to identify the structures	
	in an image	190
0.4	Automatic conflation of maps with imagery	192
0.5	Results of conflating MapQuest map with imagery	192
0.6	Integration of train schedules with vector data and maps	194
11.1	CEEFAX weather map	202
11.2	Minitel "kiosk"	202
11.3	Aspen Movie Map Project	204
11.4	Surrogate walk from the Domesday Community disc	205
1.5	Territorial evolution of Canada	206
11.6	Ashdowne's Virtual Atlas – initial text interface	207
11.7	Perry-Castañeda Library, The University of Texas at Austin map	_
	of Australia	208
11.8	CIA World Fact Book map of Australia	209
11.9	MapQuest – Victoria, Australia	210
11.10	Bodleian Library: Plan for rebuilding London – J Evelyn 1666	211

x	FIGURES

11.11	LandChannel, Government of Victoria	211
11.12	WhereIs map information	212
11.13	Australian Coastal Atlas	214
11.14	National Atlas of Canada Quick Maps	215
11.15	Atlas of Switzerland	216
11.16	WAP-enabled cellular telephone delivering map information	
	from Webraska	217
12.1	1:25.000, 1:100.000, and 1:250.000	224
12.2	Generalization as a sequence of modeling operations	22.5
12.3	Model and cartographic generalization acting in unison to	0
1210	reveal different qualities about The Tower of London	225
12.4	Generalization in the context of automated solutions	2.2.7
12.1	The choice sequence and degree of application of various	/
12.0	methods enable synthesis of different solutions	229
12.6	Transformations with decreasing man scale and corresponding	
12.0	scale hands for a tonographic map	231
127	Examples drawn from paper maps of building generalization	201
12.7	at various scales	231
12.8	Decision tree for key buildings	231
12.0	Different products according to theme and scale derived from	232
12,7	the same source	233
131	Sample frame for soil fertility characteristics	233
13.1	Sample frame for LiDAR data	212
13.3	A TIN generated from the points displayed in Figure 13.2	245
13.4	LiDAR derived raster hillshade. TIN and TIN hillshade	246
13.5	Perspective surface views and TINS with and without adaptive	210
10.0	LOD proportional to the viewpoint	247
13.6	Kernel estimation of a reference-interval function	248
13.7	An isoline visualization or contour man	249
13.8	A filled contour visualization of the same area as is shown in	212
10.0	Figure 13.7	250
139	A psycho-3D view of the same general area as is shown in	200
10.7	Figure 13.7	251
13.10	A slope map of the same area as is shown in Figure 13.7	2.52
13.10	Hillshaded maps of the same area as is shown in Figure 13.7	252
13.11	A navigable 3D view of the area around the University	200
10,12	of Leicester	254
14 1	A simple example of typical results from using the FCM	201
1 1.1	algorithm	265
151	Knowledge-based approach to rule-based mapping under GIS	205
15.1	Example of descriptive knowledge expressed as a rule for	275
10.2	rule-based mapping	275
15.3	A distribution of Soil Series Basco in Pleasant Valley Wisconsin	275
10.0	USA	280
15.4	The metrics of a fuzzy membership function	280
15.5	Three basic forms of membership functions	281
10.0	Three basic forms of membership functions	202

	FIGURES
15.6	The predicted distribution of Soil Series Basco in Pleasant Valley,
	Figure 15.2
15.7	Predicted distribution of soil series in Pleasant Valley, Wisconsin,
	USA based on a Boolean implementation of the rules in
	Figure 15.8
15.8	Descriptive rules for soils in Pleasant Valley, Wisconsin, USA
15.9	Predicted distribution of soil series in Pleasant Valley, Wisconsin,
	USA based on a fuzzy implementation of the rules in Figure 15.8
15.10	Uncertainty map associated with the soil map produced under
	the fuzzy implementation of the rules for the Pleasant Valley area
16.1	Thematic map of population by county for the conterminous
	48 states of the USA
1()	Visualization of changes in nonvestion growth and immigrant

16.2	Visualization of changes in population growth and immigrant	
	population using proportional circles	298
16.3	Which inner circle seems bigger? A visual illusion concerning	
	the size of circles	298
16.4	Characterization of oil reservoirs through time	299
165	A parallel coordinate plot (PCP) showing demographic and	

16.5	A parallel coordinate plot (PCP) showing demographic and	
	related information for the 48 conterminous US states	300
16.6	Multiple scatterplots and bivariate maps of demographics and	
	cancer-related data, organized in a matrix	301
16.7	Scatterplot matrix showing land cover data and decision tree	

	rules used in classifying the data	302
16.8	A surface produced by clustering US states based on their	
	demographic properties	303
16.9	The city of London during the seventeenth century	304
16.10	A concept map depicting events that have shaped the landscape	
	of central Pennsylvania	305
16.11	A visualization of 100 census variables showing correlation	

	and entropy	306
17.1	The basic geometric model built in ArcScene and an example	
	of a finely rendered building imported into the scene	321
17.2	A geographic "sea" showing the intensity of retail activity layered	
	onto the 3D geometry of central London	323
17.3	A typical fly-through in virtual London	324
17.4	Porting the digital model and various panoramas into a	
	virtual world	326

17.5	The Arthur interface	327
17.6	Geographic visualization of web traffic	329
17.7	Interfaces to GIS using 3D globes	330
17.8	Constructing the Simulacra	332
17.9	Printing the virtual city using CAD/CAM technology	333
18.1	The location of study area (LHS) and the houses in the samples	
	(RHS)	342
18.2	Posterior distribution for $\delta = \mu_1 - \mu_2$	345

285

287

287

288

289

297

FIGU	RES
------	-----

19.1	A concept hierarchy for <i>location</i>	355
19.2	A data cube for traffic data attributed by date, time of day,	
	and station	356
19.3	Traffic map cube visualization by date, time of day, and station	360
19.4	Traffic map cube visualization by date, time of day, and	
	geographic location	361
22.1	Cluster morphology of cancer incidence on Long Island	405
22.2	Cluster change and persistence	406
22.3	Cluster change and persistence continued	407
22.4	Cluster change and persistence continued	408
22.5	Disparity clusters	410
22.6	Information frames provide cogent summaries of the properties	
	of spatial cluster statistics	412
23.1	Schematic diagram showing site-specific, local, and regional	
	interaction as a function of time	419
23.2	Watershed modeling with GIS and WEPP	424
23.3	Scale effects of terrain analysis	430
24.1	Eight possible ATC commands for a single aircraft	440
25.1	A conceptual diagram of multipurpose land information system	
	development	453
26.1	The relations of GIS, participation, and the Internet in the	
	case studies	470
28.1	CCARC Central American mapping projects	496
28.2	CCARC Nicaraguan map detail with large point symbols and	
	line hatching indicating survey imprecision	499
28.3	Tiling and overlaps in CCARC Nicaraguan Bloques	500
28.4	Draft map of Krukira with straight lines between points	501
28.5	Sketch map of Auka, Honduras	502
28.6	Topographic map of Auka, Honduras	504
28.7	Waterproof kit contents	505
28.8	DGPS receiver and pocket PC with ArcPad data collection	510
20.0	software	510
28.9	GPS waterproof notebook pages	511
28.10	Position types: Direct, indirect, registered, and estimated	512
28.11	Land use categories and symbols for Nicaragua	513
28.12	Land use categories and symbols for Honduras	514
28.13	Final map of Auka, Honduras	515
28.14	Land use differences in overlap between Ahuas and Wawina,	510
20.1	nonduras	516
30.1	PC monitor in Texas high school showing series of themes	511
20.2	Dimensions of CIS advantion	541
30.2 20.2	Student displaying the regults of his CIS analysis in 2D	552
30.3 21 1	Example from the Dept men collection	33Z
31.1 21.2	City of Valleio economic development information system	561
31.2 31.2	Options for thematic map and resulting presentation of	303
51.5	Sphons for mematic map and resulting presentation of	561
	SCOUISH CELISUS UATA	.)04

xii

	FIGURES	xiii
31.4	The interface of the USGS seamless data distribution system	566
31.5	An example search for data with GeoXWalk	567
31.6	Three-tier web GIS architecture	570
31.7	Open web services framework	572
31.8	Interoperating web map Services	573
31.9	Two representations of the same data using different style layer	
	descriptors and an extract from the SLD	574
31.10	A thin client and a thick client	576
31.11	Ordnance Survey MasterMap data displayed as SVG	576
31.12	Example of the use of SVG	577
32.1	The technological niche of LBS	583
32.2	Experimental PDA interface for LBS that provides map, text and	
	voice wayfinding instructions	585
32.3	Basic system architecture for LBS	586
34.1	Object-centric location models	616

Jochen Albrecht

Department of Geography, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021, USA. E-mail: jochen@geo.hunter.cuny.edu

Michael Batty

Centre for Advanced Spatial Analysis, University College London, 1–19 Torrington Place, London WC1E 6BT, UK. E-mail: mbatty@geog.ucl.ac.uk

Allan J. Brimicombe

Centre for Geo-Information Studies, University of East London, Longbridge Road, Dagenham, Essex RM8 2AS, UK. E-mail: a.j.brimicombe@uel.ac.uk

James D. Brown

Institute for Biodiversity and Ecosystem Dynamics, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands. E-mail: brown@science.uva.nl

Chris Brunsdon

Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: cb179@lei.ac.uk

William E. Cartwright

School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Victoria 3001, Australia. E-mail: w.cartwright@rmit.edu.au

Martin E. Charlton

National Centre for Geocomputation, National University of Ireland, Maynooth, Ireland. E-mail: martin.charlton@may.ie

George C. H. Cho

Division of Health, Design and Science, University of Canberra, Canberra, ACT 2601, Australia. E-mail: george.cho@canberra.edu.au

David J. Cowen

Department of Geography, University of South Carolina, Columbia, SC 29208, USA. E-mail: cowend@gwm.sc.edu

Peter H. Dana

PO Box 1297, Georgetown, TX 78627, USA. E-mail: pdana@pdana.com

Yongxin Deng

Department of Geography, Western Illinois University, Macomb, IL 61455-1390, USA. E-mail: Y-Deng2@wiu.edu

Sara I. Fabrikant

Department of Geography, University of Zurich, Winterthurestrasse 190, CH-8057 Zurich, Switzerland. E-mail: sara@geo.unizh.ch

Peter F. Fisher

School of Informatics, City University, Northampton Square, London, EC1V 0HB, UK. E-mail: pff1@soi.city.ac.uk

Frederico Fonseca

School of Information Sciences and Technology, Pennsylvania State University, University Park, PA 16802-6823, USA. E-mail: fredfonseca@ist.psu.edu

A. Stewart Fotheringham

National Centre for Geocomputation, National University of Ireland, Maynooth, Ireland. E-mail: stewart.fotheringham@may.ie

Mark Gahegan

GeoVISTA Center, Department of Geography, Pennsylvania State University, University Park, PA 16802, USA. E-mail: mng1@psu.edu

John C. Gallant

CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia. E-mail: john.gallant@csiro.au

Michael F. Goodchild

National Center for Geographic Information and Analysis, Department of Geography, University of California, Santa Barbara, CA 93106-4060, USA. E-mail: good@geog.ucsb.edu

Trevor M. Harris

Department of Geology and Geography, West Virginia University, Morgantown, WV 26506, USA. E-mail: trevor.harris@mail.wvu.edu

Gerard B.M. Heuvelink

Laboratory of Soil Science and Geology, Wageningen University and Research Centre, PO Box 37, 6700 AA, Wageningen, The Netherlands. E-mail: gerard.heuvelink@wur.nl

Michael F. Hutchinson

Centre for Resource and Environmental Studies, Australian National University, Canberra ACT 0200, Australia. E-mail: hutch@cres.anu.edu.au

Geoffrey M. Jacquez

BioMedware, Inc., 515 North State Street, Ann Arbor, MI 48104-1236, USA. E-mail: jacquez@biomedware.com

Piotr Jankowski

Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4493, USA. E-mail: piotr@typhoon.sdsu.edu

Christopher B. Jones

Department of Computer Science, Cardiff University, Newport Road, PO Box 916, Cardiff, Wales CF24 3XF, UK. E-mail: c.b.jones@cs.cardiff.ac.uk

Joseph J. Kerski

Environmental Systems Research Institute, Inc., 1 International Court, Broomfield, CO 80021-3200, USA. E-mail: jkerski@esri.com

Craig A. Knoblock

Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, USA. E-mail: knoblock.isi.edu

Brian G. Lees

School of Physical, Environmental and Mathematical Sciences, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600, Australia. E-mail: b.lees@adfa.edu.au

William A. Mackaness

School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh, Scotland, EH8 9XP, UK. E-mail: william.mackaness@ed.ac.uk

David J. Martin

School of Geography, University of Southampton, Highfield, Southampton SO17 1BJ, UK. E-mail: d.j.martin@soton.ac.uk

Harvey J. Miller

Department of Geography, University of Utah, Salt Lake City, UT 84112-9155, USA. E-mail: harvey.miller@geog.utah.edu

xvi

Ashley Morris

School of Computer Science, Telecommunications, and Information Systems, DePaul University, Chicago, IL 60604, USA. E-mail: amorris@cti.depaul.edu

Timothy L. Nyerges

Department of Geography, University of Washington, Seattle, WA 98195-3550, USA. E-mail: nyerges@u.washington.edu

Ross S. Purves

Department of Geography, University of Zurich – Irchel, Winterthurerstr. 190, CH-8057 Zurich, Switzerland. E-mail: rsp@geo.unizh.ch

Andreas Reuter

European Media Laboratory, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany. E-mail: andreas.reuter@eml.org

Vincent B. Robinson

Department of Geography, University of Toronto, Mississauga, Ontario L5L 1C6, Canada. E-mail: vbr@eratos.erin.utoronto.ca

Cyrus Shahabi

Integrated Media Systems Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-2561, USA. E-mail: cshahabi@pollux.usc.edu

Shashi Shekhar

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA. E-mail: shekhar@.cs.umn.edu

André Skupin

Department of Geography, San Diego State University, San Diego, CA 92182-4493, USA. E-mail: skupin@mail.sdsu.edu

Nicholas J. Tate

Department of Geography, University of Leicester, Leicester LE1 7RH, UK. E-mail: n.tate@le.ac.uk

David L. Tulloch

Center for Remote Sensing and Spatial Analysis, Rutgers, State University of New Jersey, New Brunswick, NJ 08904, USA. E-mail: dtulloch@crssa.rutgers.edu

Ranga Raju Vatsavai

Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA. E-mail: vatsavai@cs.umn.edu

Daniel Weiner

Department of Geology and Geography, West Virginia University, Morgantown, WV 26506, USA. E-mail: daniel.weiner@mail.wvu.edu

John P. Wilson

Department of Geography, University of Southern California, Los Angeles, CA 90089-0255, USA. E-mail: jpwilson@usc.edu

May Yuan

Department of Geography, University of Oklahoma, Norman, OK 73019-1007, USA. E-mail: myuan@ou.edu

A-Xing Zhu

Department of Geography, University of Wisconsin, Madison, WI 53706-1404, USA. E-mail: azhu@facstaff.wisc.edu

Alexander Zipf

Department of Geoinformatics and Surveying, University of Applied Sciences FH Mainz, 561156 Mainz, Germany. E-mail: zipf@geoinform.fh-mainz.de