
Optimal Network Location Queries
 

Parisa Ghaemi, Kaveh Shahabi, John P. Wilson*, Farnoush Banaei-Kashani 
Computer Science Department 

University of Southern California 
Los Angeles, CA 90089 

[ghaemi, kshahabi, jpwilson, banaeika]@usc.edu 
 

ABSTRACT 
Given a set S of sites and a set O of weighted objects, an optimal 
location query finds the location(s) where introducing a new site 
maximizes the total weight of the objects that are closer to the 
new site than to any other site. With such a query, for instance, 
a franchise corporation (e.g., McDonald’s) can find a location to 
open a new store such that the number of potential store 
customers (i.e., people living close to the store) is maximized. 
Optimal location queries are computationally complex to 
compute and require efficient solutions that scale with large 
datasets. Previously, two specific approaches have been 
proposed for efficient computation of optimal location queries. 
However, they both assume p-norm distance (namely, L1 and 
L2/Euclidean); hence, they are not applicable where sites and 
objects are located on spatial networks. In this paper, we focus 
on optimal network location (ONL) queries, i.e., optimal 
location queries with which objects and sites reside on a spatial 
network. We introduce an approach, namely EONL (short for 
Expansion-based ONL), which enables efficient computation of 
ONL queries. Moreover, with an extensive experimental study 
we verify and compare the efficiency of our proposed approach 
with real datasets, and we demonstrate the importance of 
considering network distance (rather than p-norm distance) with 
ONL queries. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – 
Spatial databases and GIS.  

Keywords 
Optimal Location Query, Query Processing in Spatial Network 
Databases  

1. INTRODUCTION 
Optimal location queries have been widely used in spatial 
decision support systems and marketing in recent years. For 
instance, a city planner might want to know: “What is the 

optimal location to open a new public library?” The optimal 
location is the site that would maximize the number of patrons 
for whom this is the closest library. Optimal location query is 
formally defined as follows: Given a set S of sites and a set O of 
weighted objects the optimal location query computes a location 
where introducing a new site would maximize the total weight 
of objects that are closer to the new site than to any other site.  

Optimal location queries are computationally complex to 
answer. The existing work considers L1 distance metrics or 
L2/Euclidean as the measure of distance between objects and 
sites and proposes efficient solutions in these p-norm metric 
spaces [6, 3]. However, with many real world applications 
objects and sites are located on a spatial network (e.g., roads, 
railways, and rivers), and therefore, the approaches that assume 
p-norm distance fail to apply. We verify the importance of 
assuming network distance with ONL queries in Section 4 via 
experiments, and we show that in 75% of the cases the results of 
optimal location queries in L1 and L2 spaces are totally disjoint 
from the actual optimal network location, with less than 20% 
overlapping in the rest of the cases.  

In this paper, for the first time we propose a scalable solution for 
efficient computation of ONL queries, namely EONL (short for 
Expansion-based ONL). We argue that the dominating 
computational complexity with ONL queries is twofold (this 
also applies to regular optimal location queries). To answer any 
ONL query, first one has to compute a spatial locality around 
each object o of the given object-dataset such that if s is the 
nearest site to object o, any new site s′  introduced within the 
locality of o will be closer to o as compared to the distance 
between s and o. Second, one must compute the overlapping 
among object localities to identify the optimal network location, 
which is a network segment (or a set of segments) where the 
localities of a subset of objects with maximum total weight 
overlap.  

Accordingly, with our proposed algorithm, EONL, we focus on 
reducing the computational complexity of the latter steps in 
ONL query answering. In particular, with EONL we simply 
compute the locality of an object by expanding the network 
around the object until we reach the nearest site s to the object. 
However, during network expansion we identify and record 
potential overlapping between localities of the objects to avoid 
redundant computation at the second step; thus, efficient 
computation of overlapping among object localities at the 
second step. Our experimental results with real datasets show 
that EONL takes less than 0.3 minute to compute ONL query 
for a dataset of 19160 object points.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage, and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. ACM GIS '10, November 
2-5, 2010. San Jose, CA, USA (c) 2010 ACM ISBN 978-1-4503-0428-
3/10/11...$10.00 
 

* John P. Wilson is a Professor of Geography, and Director of the 
Spatial Sciences Institute at the University of Southern California. 

478



The remainder of this paper is organized as follows. Section 2 
formally defines optimal network location queries in spatial 
network databases. Section 3 introduces our proposed 
expansion-based solutions for optimal network location queries. 
In Section 4, we evaluate our proposed solutions via 
experiments with real data.  Section 5 reviews the related work, 
and Section 6 concludes the paper and discusses directions for 
future research.  

2. PROBLEM FORMALIZATION 
In this section, we formalize the problem of optimal network 
location as a Maximum Overlap Segment (MaxOSN) problem. 
Assume we have a set S of sites (e.g. public schools, libraries, 
restaurants) in a 2D environment. Also we have a set O of 
objects with a weight w(o) for each object o. For instance, object 
o might be a residential building/property where w(o) represents 
the number of people living in this building. A MaxOSN query 
returns a subset of the spatial network (i.e., a segment or 
collection of segments) where introducing a new site would 
maximize the total weight of the objects that are closer to the 
new site than to any other site. We assume both sites and objects 
are located on a spatial network, e.g., a road network. We model 
the road network as a graph G (N, E), where N is the set of 
nodes and E is the set of edges of the road network. Each edge 
e(a ,b) has a travel cost. In this paper, we assume the cost of 
each edge e is proportional to the distance between the two end 
points a and b of e. Accordingly, the network distance dN(a,b) 
between any two nodes a and b, is the travel cost of the path 
with least cost from a to b. Fig. 2 shows a road network with 14 
nodes and weighted edges, four objects o1, o2, o3, and o4 with 
weights 3, 6, 5, and 4, respectively, and three sites s1, s2, and s3. 

 
Fig. 2.  Road network model 

Below, we first define our terminology. Thereafter, we describe 
the MaxOSN query problem. 

DEFINITION 1 (LOCAL NETWORK). Given an object o, the 
local network LN(o) of o, is a sub-network expanded at object o 
that contains all points on the road network with a network 
distance less than or equal to the network distance between o 
and its nearest site s.  

In Fig. 3, site s1 is the nearest site to the object o1 where 
dN(o1,s1)=5. LN(o1) is identified by expansion, i.e., starting from 
o1 we traverse all possible paths up to the network distance 
equal to 5, and we delimit LN(o1) by marking the ending points 
(shown as arrows in Fig. 3). We term this delimitation process 
edge marking. The expanded network consists of a set of local 
edges connecting the associated object to all marked ending 

points. It is important to note that local edges can fully or 
partially cover an actual edge of the road network. For instance, 
the local edges of LN(o1) are o1n2, o1n1, o1n4 and o1n (shown as 
bold lines in Fig. 3). Each local edge e is also assigned an 
influence value, denoted by I(e), which is equal to the weight of 
the corresponding object. For example, all local edges in LN(o1) 
have an influence value equal to 3 (i.e., the weight of object o1).  

 
Fig. 3. Local networks 

DEFINITION 2 (OVERLAPPING LOCAL NETWORKS). A 
local network LN(o1) overlaps a local network LN(o2) if there 
exists a local edge e1 in LN(o1) which intersects a local edge e2 
in LN(o2).  
For instance, in Fig. 3 LN(o1) overlaps with LN(o2) since the 
local edge o1n2 in LN(o1) overlaps with the local edge o2n3 in 
LN(o2).  

DEFINITION 3 (OVERLAP SEGMENT). Given two 
overlapping local networks, an overlap segment s is a network 
segment where the overlapping local edges of the two local 
networks intersect.  The influence value of segment s is equal to 
I(e1) +I(e2), where e1 and e2 are the overlapping local edges 
from the two local networks. 
For example, in Fig. 3 the overlap segment jn2 is identified by 
overlapping the local edges o1n2 and o2n3. Also, its influence 
value is equal to 9.  

DEFINITION 4 (MAXIMUM OVERLAP SEGMENT QUERY 
(MaxOSN)). Given a set O of objects, a set S of sites, the 
MaxOSN query returns optimal network location, i.e., one or 
more overlap segment(s) which have the maximum influence 
value (I0) among all overlap segments.  
For instance, in the road network illustrated in Fig. 3 the 
MaxOSN query returns the set of overlap segments {o3n8, o3n5}, 
where each segment has an optimal influence value I0 =11. 

3. Expansion-Based Optimal Network 
Location (EONL) 
As we mentioned in Section 1, answering an ONL query is a 
two-phase process.  At the first phase, one needs to build the 
local networks of all objects, whereas at the second phase local 
networks of the objects are overlapped in order to identify the 
overlap segment(s) with maximum influence value (i.e., the 
optimal location/segment). With EONL, we focus on reducing 
the computational complexity of the second phase. In particular, 
at the first phase EONL simply uses network expansion to build 
the local networks. At the second phase, assuming we have n 
objects (and therefore, n local networks), one should compute 

479



the overlap between 2n combinations of local networks. In this 
case, if (for example) one of the network range-query 
processing techniques proposed by Papadias et al. [4] is used for 
overlap computation, the total computational complexity would 
be in the order of O (2|O| (|N| log |N| + |E|)). Obviously, this 
approach is not scalable. Instead, with EONL we identify the 
potential optimal segments while expanding local networks at 
the first phase, and leverage this information at the second phase 
to efficiently compute the segment(s) with maximum influence 
value. To be specific, while expanding the local networks at the 
first phase, for each edge we record all ending points (i.e., the 
points that mark the border of the local networks of the objects) 
that lie over the edge. Subsequently, at the second phase we use 
the information recorded at the first phase to compute a score 
for each edge, which is equal to the total weight of the objects 
whose local networks end on the edge. One should observe that 
a higher score for an edge indicates higher potential of 
containing an optimal segment. Next, through a refinement 
process we sort the edges based on their scores in descending 
order, and starting from the edge with higher score, we use a 
technique, termed edge collapsing, to compute the actual 
overlap segment(s) on each edge. It is important to note that 
through this refinement process we only have to compute the 
actual overlap segment(s) for an edge if the score of the edge is 
more than the influence value of the actual segments computed 
so far. With our experiments, we observe that EONL only 
computes the actual overlap segments for a limited subset of the 
network edges before it identifies the optimal location/segment; 
hence, effective pruning of the search space for better 
efficiency.  

Table 1. Edge collapsing technique 

Case Overlapping Local Edges Overlap Segment 

1 
 

S0 = am1  
I0 =  I(e1 ) + I(e2 )  

2 
 

S0 = ab 

I0 =  I(e1 ) + I(e2 ) 

3 
 

If (I(e1 ) > I(e2 ) ) 
  S0 =a m1 ; I0 =  I(e1 )   
Else 
  S0 =b m2 ; I0 =  I(e2 )   

4 
 

S0 = m2m1 

I0 =  I(e1 ) + I(e2 ) 

 

Below, we explain how we implement EONL in more detail; we 
begin by introducing our edge collapsing technique. Table 1 
represents four possible cases by which two local edges e1 and 
e2 might overlap each other. The dashed lines represent local 
edges e1 and e2, the solid line represents the actual edge ab of 
the road network, and m1 and m2 are the end points of e1 and e2. 
The third column summarizes how the edge collapsing 
technique computes the overlap segment (S0) with the maximum 
influence value (I0) in each case. Next, we describe the 
implementation of EONL as a four-step algorithm: 

Step 1 (Expanding local networks): For each object point o, we 
first expand the local network of object o, LN(o), using the 

Dijkstra algorithm [2]. Then, we mark the ending points of the 
local networks on the edges. Table 2 shows sample subsets of 
the marked edges of Fig. 3. Each row of the Marked Edge Table 
(MET) is an entry in the form of (e, M, w(e)) where M is the set 
of ending points marked on edge e and w(e) is equal to the sum 
of influence values of the end points (i.e., the corresponding 
local edges).  

Table 2. Marked Edge Table (MET) 

e M w(e)
kp {n1} 3
kj {n3} 9
hg {n8} 11

Step 2 (Sorting MET Table): We sort all entries in the MET 
table in descending order of w(e) because of our observation 
that the optimal solution is mostly derived from the entries with 
larger w(e) values. Then, we apply the edge collapsing 
technique to the first entry of MET and initialize the S0 and I0 
values (see Table 1). 
Step 3 (Identifying overlap segments): From the set of marked 
edges in MET table, we identify the overlap segments using the 
edge collapsing technique. We could apply the edge collapsing 
technique to all marked edges; however, we do not need to 
apply this approach for some marked edges if there is another 
marked edge whose influence value has a smaller value than I0. 
While applying edge collapsing to eligible marked edges, we 
update I0 to the actual influence value of the marked edge and 
compute the corresponding overlap segment(s), S0. 
Step 4 (Finding the maximum influence value): When the 
algorithm terminates, S0 returns the set of optimal overlap 
segment(s) with the optimal influence value I0.  
Below, we discuss the computational complexity of our 
proposed approach. The cost of expanding local networks is O 
(|O| (|N| log |N| +|E|)), constructing the MET table is O (|E|) and 
sorting the table is O (|E| log |E|). Also, edge collapsing requires 
O (|E| |O|2) time. Thus, the overall running time of EONL 
approach is O (|E| log |E|) + O (|O| (|N| log |N| +|E|)) +O (|E| 
|O|2). 

4. EXPERIMENTAL EVALUATION 
We next describe the experimental setup we used for the 
experiments, and then present and discuss the experimental 
results.  

4.1 Experimental Setup 
For all experiments, we use a spatial network of |N| = 375691 
nodes and |E| = 871715 bidirectional edges, representing the LA 
County road network. We use real dataset for objects and sites. 
Objects are population data derived from LANDSCAN 
population data. The centroid of each grid cell is treated as the 
location of each object and the population within each grid cell 
as the weight of object. In total we have |O|= 9662 objects. We 
also deployed four datasets consisting of McDonald’s 
restaurants, hospitals, schools, and all fast food restaurants in 
LA County (including McDonald’s) for the sites (see Table 4).  

Table 4. Four real datasets for sites 
Datasets Cardinality Datasets Cardinality 

McDonald’s 328 Schools 2621 
Hospitals 308 Fast Foods 19160 

480



4.2 Experimental Results 
Below we present the results of the two series of experiments 
that we ran on the aforementioned datasets. 

Accuracy: We first verified that the optimal location query in 
L1 and L2/Euclidean space is not applicable to spatial networks. 
For this test, we selected four datasets with 20, 40, 60, and 85 
object points that were randomly selected from the population 
data (DS1-DS4). All four sets of object points were located on 
LA county road network. For site points, we selected a subset of 
McDonald’s including seven sites.  We applied the L2 [6] and L1 
[3] distance approaches and identified the optimal location in 
each case. Then, we performed the EONL algorithms on each 
dataset and retrieved their corresponding optimal network 
location. The result of this experiment showed that in 75% of 
cases (we call it set A) the optimal locations derived by the 
L1/L2 approach did not overlap the optimal network location 
derived by EONL and when they did overlap, there was < 20% 
common coverage. From cases included in set A, the average 
distance between the optimal network location and the optimal 
location derived from the L1 and L2 approaches (<N, L1>, <N, 
L2 >) are similar to the size of the entire area covered by these 
datasets (see Table 5) and verifies that using the existing L1 and 
L2 approaches for optimal location queries on spatial network 
databases is not accurate and likely to return irrelevant results. 

We also observed that the maximum influence value returned by 
the optimal network location query is 13% and 12% higher than 
those returned by the optimal location queries in the L1 and L2 
approaches, respectively. 

Table 5. Average distance of optimal network location and 
optimal location derived by L1 and L2 approaches 

 (Size of the entire area is 6.2 km x 9 km) 
Dataset <N, L1> (meters) <N, L2 > (meters) 

DS1 Overlaps (<  20% coverage) 
DS2 4998 5305 
DS3 4995 2743 
DS4 6663 6396 

Average 5552 4814 
 

Execution Time: In order to evaluate the execution time of 
our proposed approach, we applied EONL approach to the four 
sites datasets of Table 4 and we selected the uniformly 
distributed population data as the fixed object dataset (including 
all 9662 points). Fig. 8 shows that EONL has lower performance 
with more skewed dataset, such as Hospitals comparing to 
uniformly distributed site points (McDonald’s, Schools, and 
Fast Foods). This variability meant that in those parts of the 
graph with few hospitals, the expansion of the local network 
traverses a longer path until it hits the nearest site. Also, 
although the size of Fast Foods restaurants is large, the 
execution time of EONL is low. This is because the complexity 
of EONL (O (|E| log |E|) + O (|O| (|N| log |N| +|E|)) +O (|E| |O|2)) 
is independent of the number of site points, |S|. Finally, it is 
important to note that the execution of EONL is significantly 
improved over the naïve optimal network location approach 
(discussed in section 3), which has an exponential time 
complexity (O (2|O| (|N| log |N| + |E|))). 

Execution Time (min)

0
0.5

1
1.5

2
2.5

3
3.5

McDonald's Hospitals Schools FastFoods

EONL

 
Fig. 8. Execution time of EONL with four different site 

datasets 

5. RELATED WORK 
Optimal location queries have been studied by researchers in 
operations research (OR) and database systems. In OR, most 
optimal location problems (also called facility location 
problems) are formulated as covering problems. These involve 
locating n sites to cover all or most of the (so-called) demand 
objects assuming a fixed service distance for sites [5, 1]. While 
OR-based solutions are effective and address various types of 
optimal location problems, many of these solutions fail to scale 
with real datasets that consist of large numbers of sites and 
objects due to their computational complexity. Accordingly, a 
number of complementary solutions are proposed by the 
database community for scalable optimal location query 
answering. In particular, the solutions provided by Wong et al. 
[6] and Du et al [3], while efficient, they assume p-norm space 
([6] assumes L2 and [3] assumes L1), and cannot support optimal 
location queries on spatial networks. Our proposed solution 
utilized network distance to address ONL queries. 

6. CONCLUSION AND FUTURE WORK 
In this study, for the first time we proposed a scalable solution 
for the problem of optimal location for objects and sites located 
on spatial networks. We verified and compared the performance 
of our solution with experimental evaluation with real data. 
We plan to study a more complex optimal location problem 
setting where the sets of sites and/or objects might be located 
both on and off spatial networks. With this problem, we will 
investigate and develop hybrid solutions.  

7. REFERENCES 
[1] Church, R. L., and Revelle, C. 1974. The Maximal 

Covering Location Problem. Papers of the Regional 
Science Association, 32, 1974. 

[2] Dijkstra, E. W. A Note on Two Problems in Connection 
with Graphs. Numeriche Mathematik, 1, 1, 269-271. 

[3] Du, Y., Zhang, D., and Xia, T.2005. The Optimal-Location 
Query. SSTD 2005. 

[4] Papadias D., Zhang, J., Mamoulis N., and Tao, Y. 2003. 
Query Processing in Spatial Network Databases. VLDB 
2003. 

[5] Toregas, C., Swain, R., Revelle, C., and Bergman, L. 1971. 
The Location of Emergency Service Facilities. Operations 
Research, 19, 6, 1971. 

[6] Wong, R. C., Ozsu, M. T., Yu, P. S., Fu, A. W., and Liu, L 
2009. Efficient Method for Maximizing Bichromatic 
Reverse Nearest Neighbor. VLDB 2009. 

481




