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Abstract:

Flow direction and specific catchment area were calculated for different flow-routing algorithras using TAPES-G and TauDEM.
A fuzzy classification was used along with cight topo—climatic aftributes to delineate six landscape classes from a 10-m USGS
DEM. A series of maps and tabular outputs were produced to compare flow-routing predictions in different parts of the study
area in the Santa Monica Mountains of southern California. The matched pair ¢-test was used to compare the performance of
pairs of specific catchment area grids across six user-defined fuzzy landscape classes. The results show that (1) the ‘source’
cells predicted with the Doo, DEMON, and FD§ algorithms were confined to hilltops; (2) two single flow-routing algorithms .
(Rho8, D8) produced poor results; and (3) the choice of flow-routing algorithm has potentially impoctant consequences for
the calculation of upslope contributing areas, sediment transport capacity, topographic wetness, and several other topographic

indices. Copyright © 2007 John Wiley & Sons, Ltd.
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INTRODUCTION

The shape of the earth’s surface plays a fundamental role
in the hydrologic, geomorphic, and ecological processes
operating at the earth’s surface because jt influences the
movement of water, sediment, and other constitfuents
within a landscape. As a consequence, terrain shape is
also fundamental to the prediction of various surface and
subsurface flow characteristics such as soil moisture and
stream flow depth and velocity (Moore er al., 1988, 1991;
Sulebak er al., 2000). Most of the patterns and processes
that create and shape these characteristics operate at the
meso- and topo-scales, and many of the solutions to envi-
ronmental problems, such as accelerated soil erosion and
nonpoint source pollution, require management strategies
that are implemented at these scales as well (Moore and
Hutchinson, 1591).

Many primary and secondary topographic attributes
have been computed from square-grid, triangulated irreg-
ular and contour-based elevation networks, and incorpo-
rated in numerous environmental classification schemes
and modeling frameworks during the past two decades
(e.g. Dikau, 1989; Band et al., 2000; Burrough et al.,
2001). The provision of gridded elevation data sets by
many natiopal mapping agencies coupled with the devel-
opment and wide distribution of methods for converting
spot height and contour elevation data to square grids
(see Hutchinson (1989) for one such method) has con-
tibuted to the trermendous growth in the popularity of
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gridded elevation data sets and grid-based algorithms for
calculating topographic attributes.

Three of the most popular attributes used in hydrologic
models—specific catchment area (SCA), topographic
wetness index, and sediment transport capacity index—
rely on some form of flow-routing algorithm to calculate
the upslope contributing area and transfer flow (water,
sediment, nutrients) to lower adjacent points or areas in
a landscape (Desmet and Govers, 1996; Mitasova and
Mitas, 2002). Grid-based flow-routing algorithms allocate
the outflow from a given cell to one or more downs-
lope cells. There are two basic terrain features that may
be responsible for directing flow from one digital eleva-
tion model (DEM) pixel to multiple downslope neigh-
bors. Thbe first is the presence of submeter terrain fea-
tures that direct flow to neighboring cells other than the
cell marking the path of maximum descent and the sec-
ond is the presence of two or more neighboring cells
that are lower in elevation. Few, if any, DEM-based
flow-routing algorithms can resolve submeter features,
but several can direct flow to two or more downslope
cells (Endreny and Woods, 2003). Several studies have
compared the performance of two or more flow-routing
algorithms using a variety of criteria but they generally
stop short of describing their coincidence with observed
runoff behavior and/or their impact on runoff prediction
(Peters et al., 1995).

Wolock and McCabe (1995) compared topographic
wetness index distributions computed with single and
multiple flow-routing algorithms using topographic maps
and surveys spread across ten states. The single flow-
routing algorithrm was similar to D8 (O’Callaghan and
Mark, 1984) and the multiple-flow direction algorithm
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incorporated similar concepts to FD8 (Quinn eral,
1991). The mean wetness values estimated with the
multiple-flow direction algorithm were higher and the
magnitude of the topographic wetness index differences
teuded to increase as DEM resolution decreased. The
multiple-flow direction algorithm also produced smoother
patterns of topographic wetness index across the DEMs
(indicating less abrupt variations in the magnitude of
topographic wetness for adjacent cells). The impact of
the topographic wetness index distributions calculated
with the single- and multiple-flow direction algorithms
on TOPMODEL (Beven and Kirkby, 1979) model effi-
ciency and simulated flow paths were negligible when
the model was calibrated by adjusting the subsurface
hydraulic parameters.

Desmet and Govers (1996) compared the upslope con-
tributing areas calculated with six different flow-routing
algorithms for a smal) catchment in Flanders, Belgium.
The D8 algorithm, 2-D aspect direction algorithmo of
Lea (1992), multiple-flow direction algorithms of Free-
man (1991) and Quinn et al. (1991), ANSWERS rout-
ing algorithm (Beasley et al., 1980), and their own fiux
decomposition flow-routing algorithm were coded in a
series of IDRISI (Eastmayp, 1992) scripts. The multiple-
flow direction algorithms produced distinctive spatial and
statistical patterns depending on the maximum number of
downslope cells to which flow could be directed. The two
single flow-routing algorithms produced patterns of SCA
different from each other and each of the multiple-flow
direction algorithms. The multiple-flow direction algo-
rithens produced much smoother distributions of SCA.
Overall, Desmet and Govers (1996) favored the two algo-
rithms that allowed flow to only one or two downslope
neighbors because they (visually) produced stronger cor-
relations with the main drainage lines. The main structure
of the catchment (i.e. the interfluves and main drainage
lines) was identified by all six-flow direction algorithms,
and most of the variability occurred in higher elevation
areas (based on the maps reproduced in the manuscript).

Desmet and Govers (1996) also examined the effect
of the choice of the flow-routing algorithm on the
predicted locations of ephemeral gullies. The multiple-
flow direction algorittuns were able to identify areas
where ephemeral gully erosion is likely, but they could
not predict the precise location of the gullies (which never
exceeded half the width of the grid cells for this particular
study area). The single flow-routing algorithuns predicted
ephemeral gullies to start higher on the slopes but the cor-
respondence with observed patierns was erratic because
these algorithms were very sensitive to small elevation
errors.

Tarboton (1997) proposed the Doo algorithm and com-
pared its performance with D8, 2-D Lea, FD8, and Digital
Elevation Model Netwark (DEMON) (Costa-Cabral and
Burges, 1994) for several hypothetical surfaces and a
pair of research catchments in Arizona and California.
He believed that the best flow-routing algorithms would
(1) avoid or minimize dispersion, (2) avoid or minimize
grid bias, (3) increase the precision with which flow
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directions are resolved, (4) require a simple and efficient
grid-based matrix storage structuge, and (5) have the abil-
ity to cope with difficult data (saddles, pits, flat areas).

Tarboton (1997) found that D8, FD8, and Doo gener-
ated different distributions of SCA iu the two research
watersheds. He argued that the Doo predictions were
superior because D8 resolves flow directions too coarsely
(point 3 above) and therefore introduces grid bias (point
2), whereas FDS introduces substantial dispersion (point
1), resulting in inefficient data storage. The Doo method,
based on triangular facets, also avoided the loops and
other inconsistencies caused by the influence of higher
neighbors and downslope flow that characterize the plane
(ftting) flow methods of Lea (1992) and Costa-Cabral
and Burges (1994). Finally, Tarboton (1997) criticized the
randomness embedded in Rho8 (Fairfield and Leymarie,
1991), arguing that upslope and SCAs are deterministic
quantities that should be computed in a repeatable way.

Wilson ef al. (2000) examined the effect of the DEM
source, grid resolution, and choice of flow-routing aigo-
rithm on five topographic attributes in a large forested
catchment in southwest Montana. The SCA and sedi-
ment (ransport capacity index (Moore and Wilson, 1992,
1994) were computed with D8, Rho8, FRho8, and
DEMON in terrain analysis program for the environ-
mental sciences-grid (TAPES-G) (Gallant and Wilson,
1996, 2000) and assigned to five classes to facilitate the
comparison of pairs of maps. The comparisons showed
that (1) the single-flow-direction algorithms initiated flow
from 30-40% of the cells and produced much higher pro-
portions of cells with small upslope contributing areas
and (2) the parallel flow paths generated with D§ take
longer distances from the tops of slopes to accumulate
large values of the upslope contributing area and SCA.
The choice of cross-grading area threshold (which is uti-
lized in TAPES-G 10 switch from FD8 to D8 and FRho38
to Rho8) produced very small (<5%) differences in both
attributes. Overall, the results showed that FRho8 and
DEMON agreed with each other in 71% of the grid
cells and that the other pairs (D8-Rho8, D8-FRho8, D8-
DEMON, etc.) agreed with each other in 49-57% of the
grid cells.

Fried et al. (2000) calculated several topographic
aftributes and examined their potential for mapping
stormwater contributing areas in Bamard Drain near
Michigan State University's East Lansing campus. Static
topographic wetness and sediment transport capacity
indices were calculated with D8 and DEMON in
TAPES-G and quasi-dynamic topographic wetness indi-
ces were calculated with dynamic wetness index-grid
(DYNWET-G) (Barling et al., 1994) and several sets of
soil parameters. The quasi-dynamic wetness index incor-
porated both the topography in the upslope contributing
area and time required for subsurface drainage to redis-
tribute soil water. The calculated wetness and stream
power indices were compared with independently iden-
tified flow paths (marked on topographic maps by two
experts from the hydrologic unit of the Michigan Depart-
ment of Environmental Quality) and GPS-referenced
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field observations of wet areas. Examination of modeled
flow paths overlaid on topographic contours showed that
DEMON produced strands of high topographic wetoess
that were far roore plausible than those produced with D8.
The level of agreement between flow paths and strands
of high dynamic topographic wetness was more difficult
to assess, in part becanse the dynamic strands tended to
be less well defined. The comparisons with field observa-
tions suggested more agreement than differences among
the various models. While the D8 static model generated
the highest level of agreement between the wet spots and
high values of topographic wetness and/or sediment trans-
port capacity indices, the variable soil dynamic model
was a close second, and was preferred over the others
for reasons related to model assumptions and its ability
to predict the investigative buffer footprints more accu-
rately. The areas of greatest disagreement occurred in
relatively flat areas, lending credence to the conventional
wisdom that flow path determination by any method is
especially challenging in areas of low relief.

Endreny and Woods (2003) calculated a series of
topographic attributes for two small fields in New Jersey
and compared the spatial congruence of overland flow
paths observed in the field to those predicted with
D8, FD8, 2D-Lea, 2D-Jensen (Jensen, 1996), and Doo.
The observed flow paths were field-sketched and then
mapped on the DEM pixels for comparison with the
computed flow paths. The lowest congruence ratings
were produced with D8 (which constrained flow to a
single neighbor) and FD8 (which directed flow into all
neighbors that were lower in elevation). The 2-D Lea
and Doo algorithms, which direct flow to a maximum of
two neighbors, produced the highest congruence ratings.
Modified versions of D8 (using a buffer to direct flow
to neighboring cells that overlapped the buffered area)
and FD§ (limiting flow to 3 or S downslope neighbors)
produced congruence rankings that rivaled those of the
more sophisticated 2D-Lea and Doo algorithms.

The results from these six studies show how different
flow-routing algorithms behave differently over a small
range of often-generalized landscapes (e.g. hypothetical
circular cones, simplified hillslopes). However, it is dif-
ficult to compare a circular cone, for example, with the
complicated terrain structures and features that charac-
terize fluvial landscapes with moderate relief such as the
Santa Monica Mountains of southern California. These
landscapes can be flat, hilly and/or steep, and more work
is needed to understand the consequences of choosing
one of these algorithms over the others in these types of
landscapes. Each flow-routing algorithm offers a unique
method 1o calculate flow direction and upslope contribut-
ing area and they are likely to produce different terrain
attributes in different landscapes and sometimes differ-
ent parts of the same landscapes. This paper sought to
advance our knowledge of these tradeoffs by testing two
null hypotheses as follows:

Hypothesis 1: The performance of the D8, Rho8,
Doo, DEMON, and FD8 flow-routing algorithms
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does not change as flow descends from steeper to
flatter terrain.

Hypothesis 2: The performance of the same five
algorithms does not vary across gifferent landscape
classes or units calculated with the fuzzy k-means
algorithm of Burrough and McDonnell (1998).

STUDY AREA

The USGS 1:24K Point Dume, CA map quadrangle
in the Santa Monica Mountains of southern California
was used to compare flow-routing algorithm performance
(Figure 1). This mountain range stretches 74 kmn from
Point Mugu in Ventura County to Griffith Park in Los
Angeles County in a narrow band that never exceeds
12 km in width. The mean elevation is 305 m and extends
from O m at the coast to 948 m. The mountains are
approximately five million years old with rugged terrain,
relatively short flow paths, and rocky or gravelly soils
(Huffman, 1998). The study area chosen for this project
is located in the middle of the mountain range on the
south side of the central ridgeline.

HYPOTHESIS TESTING

The following five-step procedure was utilized to test the
two hypotheses. First, the 10-m USGS DEM for the study
area was downloaded and clipped to eliminate some edge
and ocean cells. Second, flow direction and SCA were
calculated with five different flow-routing algorithms.
Third, these results were compared, paying particular

Figure 1. Map showing gray-scale Point Dume DEM plus two inset boxes
labeled A and B
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attention to differences in spatial pattern and magnitude
of differences in the SCA. Fourth, eight primary and sec-
ondary topographic attributes were generated and used
to classify the study area into a series of fuzzy land-
scape classes—the k-means fuzzy classification method
is attractive because it is reproducible and generates map-
pable landform classes that correspond to field-observable
landform structures. Finally, the computed SCA was tab-
ulated by flow-routing algorithm and landscape class to
identify those parts of the landscape where different flow-
routing algorithms produced significantly different esti-
mates of the SCA.

Data acquisition and preprocessing

The 10-m Point Dume, CA DEM (code 34 118a7) was
downloaded from the web (http://data.geocomm.com).
The projection was changed to NADS83 and UTM zone 11
using the nearest neighbor (default) option, and the injtial
quadrangle was clipped to a rectangle with 1]18 rows and
1358 columns. The ocean cells were then masked out
and their values reported as NODATA. The final DEM
contained 1, 263, 296 cells.

Flow direction and specific catchment area calculations

Flow directions and SCAs were calculated with DS,
Rho§, FD8, DEMON, and Doo in TAPES-G and Tau-
DEM that were downloaded free-of-charge from the web
(see http://uscgislab.net and http://moose.cee.usu.edu/
taudem/taudem.html for additional details). Spuorious pits
were not removed prior to running TAPES-G and Tau-
DEM. Further details about the concepts and quirks incor-
porated in each of the flow-routing algorithms are pro-
vided below.

The D8 (deterministic eight-node) single-flow-direc-
tion algorithm directs flow from each grid cell to one
of eight nearest neighbors based on the slope gradient
(O’Callaghan and Mark, 1984). The aspect ¥ (measured
in degrees clockwise from north) marks the direction of
the steepest descent for each grid cell or point in a catch-
ment and is the directian in which water would flow from
that grid cell or point. Most implementations of D8 utilize
the primary flow direction (FLOWD) for water moving
over the land susrface as an approximate replacement for
aspect {Moore, 1996). The simplest method of calculating
FLOWD is to determine the slope (§;) to each neighbor:

Si = p(iXze — z)/x M

where ¢(i) = 1 for the NSEW neighbors, ¢(i) = 1/,/2
for the NE, SE, SW, and NW neighbors, z9 refers to
the elevation of the center grid cell, z is the elevation
recorded for the eight neighboring grid points in a 3 x 3
moving window (z;, 22, - .. Z9), and A is the grid spacing
(Gallant and Wilson, 2000). FLOWD was then set to
27! where J is the direction for which §; is highest. The
upslope contributing area is the number of pixels whose
flow reaches the pixel of interest multiplied by the pixel
area, and the SCA is the upslope contributing area divided
by the contour width, which is assumed to equal the
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‘width’ of a grid cell. Some implementarions of D8 utilize
the grid spacing for both cardinal and diagonal flow
assignments, while others, such as TAPES-G, assume that
the grid cell width is a good estimate for flow width in
the cardinal directions and that the cell width multiplied
by /2 is the best estimate of the flow width for flow
assignments to diagonal cells. There is little theoretical
or empirical evidence to support one or the other of these
options, and further research to clarify what types of
estimates would work best in different circumstances is
needed (Gallant et al., 2000). The procedure coded in
TAPES-G was utilized in this particular study.

The Rho8 (random eight-node) algorithm developed
by Fairfield and Leymarie (1991) introduced a degree
of randomness to break up the parallel flow paths that
D8 tends to produce on planar surfaces (Wilson and
Gallant, 2000). This algorithm starts by identifying all
the downslope neighboring cells, then calculates the
slope gradients in each of these directions, and finally
extracts random numbers from a table to direct the flow
to one of these candidate cells. The random numbers
are allocated on a slope-weighted basis such that the
potential flow paths with the steepest gradients have the
greatest probability of being selected and the overall
flow pattern more or less matches the one produced with
D8. The upslope contributing and SCAs are calculated
using the flow width and flow accumulation approaches
adopted for D8, although a different flow network is
produced each time the algorithm is used because of the
random assignment of flow among multiple downslope
cells (Wilson et al., 2000).

The FD8 multiple-flow direction algorithm developed
by Quinn er al. (1991) directs water to every adjacent
downslope cell on a slope-weighted basis. Figure 2 shows
how two weights—0-5 and 0-35 for cardinal and diagonal

103.8 101.5 102.1
101.7 100.0 98.4
—3 C
100.4 9.2 6.4
Y
a b
a=0.50*1an [(100.0 - 97.2) / dx1) = 0.002443  45.3%
b = 0.35 * tan [(100.0 - 96.4) / dx2] = 0.001555  28.8%
¢=0.50 " tan [{100.0 - 98.4) / dx1] = 0.001396 25.9%

Z = 0.005394
Figure 2. Allocation of flow to muliiple downslope cells using FD8
muldple-flow direction algorithm
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directions respectively—plus slope gradients are utilized
to calculate the proportion of flow assigned from the
center cell to each downslope cell in a three-by-three
moving window. The length dx/ is set to 10 m (i.e.
the cell spacing) and dx2 to 14-14 m to mimic the flow
path lengths 1n the cardinal and diagonal directions. Each
cell receives only a fraction of the discharge from each
upslope cell and, therefore, the vpslope contributing area
of the receiving cell is typically composed of partial
contributions from many differeat cells. The SCA is
calculated as the sum of the contributing areas from
upslope cells divided by the cell width for cardinal
flow directions and by the cell width multiplied by
/2 for diagonal flow directions (similar to D& and
Rho8 in TAPES-G). A maximum cross-grading area
threshold of 50000 m® was also utilized with FD8 in this
particular study to switch from multiple to single flow
directions (i.e. D8), which means that flow dispersion
was terminated whenever cells with upslope contributing
areas >350000 m? (>500 cells) were encountered.

The fourth algorithm called DEMON was developed
by Costa-Cabral and Burges (1994) and determines the
flow direction based on the local aspect angle, similar
to Lea (1992). Both DEMON and 2-D Lea assume that
flow moves across a planar surface in the direction of
the steepest slope, or aspect angle, similar to a ‘rolling
bal)’ such that, if a ball was released from the center
of a grid cell, it would travel down the steepest grade.
This same rationale may be used to describe D8 but for
the fact that Lea (1992) specified aspect in 1° increments
(versus the 45° increments used for D8) and the flow
generated over a pixel in DEMON is directed downslope
over a two-dimensional flow strip (Costa-Cabral and
Burges, 1994). These flow strips partition catchunents
into irregularly shaped elements that are defined by pairs
of orthogonals and equipotential lines {(contour lines).
The width of the flow strips increases over divergent
topography, decreases over convergent topography, and
remains constant over planar surfaces (Figure 3(a)).

Figure 3(b) shows the sequence of flow paths in
coordinate pairs that originated from the source pixel
(I, 1) in Figure 3(a). Each branch corresponds to one
stream tube in Figure 3(a). The amount of flow for each
pixel is the flow accumulation of itself plus the amount
of flow entering that pixel. When flow reaches an edge
of a grid cell at a cardinal direction, then all flow is
directed to the single neighbor. In other cases, the flow
is split amongst the cardinal neighbors (Figure 3(c)).
The fraction of flow distributed to each cardinal cell in
Figure 3(c) is determined by

AA_I_A}’ 1

fe=74 2 Ax tan(a)
fs=1-f¢

where A, is the dark triangular area where the flow is
directed into the eastern neighbor, A is the pixel area
AxAy (where Ax or Ay refers to a pixel side), and ¢
is the flow angle of the pixel. The upslope contributing

(2)
(3)
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(a)

(b)

(¢}
NW N NE
w E
SW S SE

Figare 3. (a) Portion of grid showing flow ubes staniing from pixel

(1,1); (b) schematic representation of flow networks branching out in

Figure 3(a); and (c) twee-by-three moving cell window showing how

flow from the source pixel is partitioned between two cardinal neighbors,
E and S (from Costa-Cabra} and Burges, 1994)

area for each cell in DEMON is computed by successive
addition of the cell areas in each stream tube entering
every pixel in the DEM, and the SCA is compuled by
dividing the upslope contributing area by the flow matrix
width. The width (w) is determined using flow angles by

“)

w=|sinw|Ax +|cosa|Ay

where Ax, Ay, and « are defined in Equation (2).
A modified version of DEMON is umplemented in
TAPES-G in which the nodes of the DEM define the
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center of the pixels instead of the entire pixel area and
the flow direction of a stream tube is defined by the aspect
using

Wep = 180 — arctan (2) +90 (Z—) )
L [2x)

where z, and z, are vector components of the surface
derivatives in the x and y directions (see Gallant and
Wilson, 1996 for further details). The upslope contribut-
ing and SCAs are calculated in the same way as in the
original version of DEMON (Costa-Cabral and Burges,
1994) in TAPES-G (Gallant and Wilson, 2000).

The final Doo algorithm was proposed by Tarboton
(1997) and incorporates several ideas from DEMON to
assign multiple-flow directions to selected cells. The flow
direction is determined in the direction of the steepest
descent and is represented as a continuous angle between
0 and 2z radians. Figure 4 shows the calcujation of
flow directions using eight triangular facets in a 3 cell
by 3 cell moving window. Each downslope vector is
drawn outward from the center and may be at an angle
that lies within or outside the 45° angle (/4 radian)
facet comer. Jf the slope vector angle falls within the
facet, it represents the steepest flow direction of that facet;
otherwise the steepest flow occurs along the steepest
edge. Special rules are included to (1) force flat pixels
to drain to a neighbor that ultimately drains to a lower
elevation and (2) eliminate loops in the flow direction
angles. Grid cells that are flat take flow direction from
the D8 method in the original Doo code, and the latest
code uses the method of Garbrecht and Martz (1997)
to assign flow directions to flat areas. The code returns
NODATA for the flow direction for grid cells thart are pits.
The upslope area of each pixel is taken as its own area
plus the fractional areas of upslope neighbors that drain
into the pixel of interest, similar to FD8 and DEMON.
If the angle falls on a cardinal or dsagonal direction,
then the flow from each cell drains to one neighbor.
If the flow direction falls between the direct angle to
two adjacent neighbors, the flow is proportioned between

Column indices

i i #l

Proportion of flow to pixel. - -,
(-1.3) 18 o Ko +a).

i-1

(-1, j+1) is
alI‘(ala-az)A

i+t

Figure 4. Flow direction on planar uriangular facets in a block-centered
grid (from Tarboton, 1997)
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the two neighbor pixels according to how close the flow
direction angle is to the direct angle for those pixels.

Fuzzy landscape classification

A series of landscape classes was identified using
the fuzzy k-means classification method described by
Burrough and McDonnell (1998). This method offers
a quantitative, reproducible approach, which has been
used in fields such as hydrology, soil science, and veg-
etation mapping. Burrough ef af. (2001) calculated eight
topographic attributes and used them with this method
to divide a 10000 km? portion of the Greater Yellow-
stone Area into six topo-climatic classes for example.
The same topographic attributes—elevation, slope, plan
and profile curvature, distance to ridgeline, topographic
wetness index, solar radiation, and sediment transport
capacity index—were used for the current study. The
D8 algorithm was used to generate the topographic wet-
ness and sediraent transport capacity index valoes used
here—the significance of this choice and the likelihood
that it influenced the comparison of the flow-routing algo-
rithm performance across the generated landscape classes
1s discussed in more detail later.

The FNX730 fuzzy k-means program that is supported
by PCRaster (Karssenberg ef al., 2001) was applied to
690 randomly selected grid points. The procedure begins
with a grouping of objects (cells) into a number of
clusters, and then reassigns the objects among the clusters
according (o the similarity between these N objects and
K cluster centers. The cluster center C of the cth cluster
for the jth attribute x was calculated as the weighted
average as follows:

N N
ch = Z(.uic)qx!'j/ Z(U-ic)q
i=1 i=l

where the fuzzy exponent g (1-35) determined the amount
of fuzziness or overlap. This iterative procedure contin-
ued until the algorithm found a stable solution ia which
objects were grouped into some prespecified number of
clusters or classes. The membership y of the ith object
to the cth cluster was then determined by

(6)

K
pie = 1)1 77970y (i)

=1

(7)

where d,-[2 is the square of the distance between the
individual | and class center ¢ according to the diagonal
norm distance metric. The smaller the distance in attribute
space, the greater the similarity of a data point to the
class. This metric was computed using the following
equation:

1%
(i) = [(Xij = Cep)/s;) 8)

j=1
where s; is the sample standard deviation for attribute
J» V is the number of landscape classes, and X;; and C,;
are as defined in Equation (6).
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Two- 10 nine-class classifications were performed for
this research, and the optimal number of classes (6) was
then determined by using scaled partition coefficient F
and classification entropy H, which express the overall
fuzziness of the classjfication. The cluster (class) centers
and ranges for the eight topographic attributes were then
used to characterize the classes as ridgelines, steep north-
facing slopes, steep south-facing slopes, stream channels,
etc. Membership maps with values ranging from O to )
were produced for each class to show the probability of
each cell belonging to each class. High values indicate a
high probability of membership in a particular class and
vice versa.

Specific catchment area comparisons

The TAPES-G and TauDEM results were imported into
ArcGIS 8-3 for grid analysis and map display. Two forms
of statistical analyses were performed and two sets of
inset maps were prepared to illustrate the performance of
the five flow-routing algorithms in more detail.

The first set of statistical tests focused on ‘low flow’
and ‘channel” cells since these grid cells have predictable

1. P. WILSON, C. S. LAM AND Y. DENG

hydrologic behaviors. Those grid cells with SCA <
10 m* m™! were categorized as ‘low flow’ cells because
overland flow was not likely to occur in these parts of
the landscape, and grid cells with SCA > 5300 m? m™!
were characterized as cells crossed by stream channels.
The 5300 m? m~' threshold was obtained by summing
the grid cells crossed by streams recorded in the USGS
Point Dume Digital Line Graph (DLG) hydrography
dataset and then selecting the same number of celis with
large SCA values computed with D8. The purpose of
isolating these cells was to determine whether the flow-
routing algorithms predicted similar numbers and spatial
patterns of ‘low flow’ and ‘channel’ cells since these
cells mark the tops and bottoms of catchments. The
grid cells with SCA > 5300 m? m™' predicted with each
flow-routing algorithm were also compared to the 1 : 24K
USGS DLG stream network to evaluate the overlap
between this network and the computer-generated stream
networks.

The second form of statistical analysis focused on
the differences between pairs of SCA grids by landform
class. Every one-thousandth cell was selected, with the

¢ 250

500 * I\
1 RN 5

DEMON

Figure S. Series of maps showing SCA values <10 m?> m~! for each flow-routing algorithm in inset A in Figore 1
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first cell location chosen randomly, and difference of
means parametric matched pairs ¢-tests were performed
to determine whether the differences between values in
pairs of SCA grids were significantly different from
ZEro.

RESULTS

Variations in specific catchment area in study area

Table Ia lists the basic SCA statistics by the flow-
routing algorithm. The minimum values varied because
different rules were used to direct the flow from each
source cell to one or more adjacent downslope cells.
The maximum values are sumilar because they represent
watershed outlets at the coast. The mean values varied
from a low of 3429 m®> m~! (DEMON) 10 a high of
4356 m? m~' (FD8)—a difference of 27%. Table Ib
partitions the SCA into a series of classes and indicates
the percentage of cells for each flow-routing algorithm
that fall into each class. These results show that D8 and
Rho8, and to a lesser extent Doo, have many more ‘tow
flow’ cells (i.e. SCA < 10 m* m™"). The same pattern is
repeated for the second class although the magnitude of
the differences is reduced. The largest number of cells
in classes 3 through 6 was generated with different flow-
routing algorithms—Doo for class 3, DEMON for class
4, and FDS for the fifth and sixth classes—although the
differences were relatively small.

The maps in Figure 5 show cells with SCA <
10 m* m~! for each flow-routing algorithm. The final
three maps indicate that the patterns produced with
DEMON, FD8, and to a lesser extent Doo, follow
ridgelines. Rho8 and D& produced more ubiquitous
patterns in that some source cells followed the ridgelines,
but others were scattered throughout the study area. At
the other extreme are the cells that might be classified as
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part of the channel system. Figure 6 shows how the five
algorithms predicted similar and more detailed channel
systems than the 1:24K DLG for the same region.
Over 80% of the same channel cells were predicted by
each pair of flow-routing algorithms, whereas <30% of
the cells were classified as channel cells with both the
DLG and any one of the computer-based flow-routing
algorithms.

Division of study area into fuzzy landscape classes

Figure 7 shows the eight topo-climatic attribute maps.
The first map shows higher elevations along the ecast
and west boundaries and, when viewed in conjunction
with the slope map, shows the main channel moving
from north to south with gentle slopes surrounding it.
Footslopes are marked by cells with low (concave)
profile curvatures in the third map as expected. A
series of alternating north- (dark color) and south-
facing (light color) slopes is clearly evident in the
solar radiation map. The topographic wetness index and
sediment transport capacity index maps show finer scaje
variability associated with water movement across this
landscape.

Table I1 summarizes basic statistics for the eight topo-
climatic attributes calculated at the 690 sample points
using PCRaster, and shows a landscape with moder-
ate relief (=700 m), many steep slopes (22° mean),
and large variations in terms of plan and profile curva-
ture, solar radiation, topographic wetness, and sediment
transport capacity index. Several variables have nonnor-
mal distributions—distance to ridgelines (RDPRX) has a
small number of very large values, annual solar radiation
(SOLAR) has a small number of small values, and WET
has a small number of large values for example. Table I
shows correlation coefficients for each pair of variables

Table 1. (a) Specific catchment area siatistics for study area (units are in m’> m™') and (b) % of cells per specific catchment area

class
(a)
Number of cells Minimum Maximum Mean Standard deviation
D8 1263296 7-07 2237670-25 371527 6058428
Rho8 1263296 7-07 2236030-25 3714-18 60469.64
Deoo 1263296 10-00 2236762.00 3934.18 61469.07
FD8 1 263296 2.56 2341777.00 4355-83 69911-69
DEMON 1263296 707 2214353-00 3428.91 5565718
®)
SCA classes (m* m™')

t (£10.0) 2 (10.1-20) 3 (20.1-40) 4 (40.1-70) 5 (70.1-100) 6 (100.1-1000) 7(> 1000)
D8 12.8 185 26-9 163 7.2 133 51
Rhko8 i34 21-6 25.0 14.3 67 140 51
Doo 76 12.9 299 20-1 7-9 16-0 5.7
FD8 4.5 12-1 24-5 20-7 10-0 23.2 52
DEMON 2-7 12-2 29.3 23-6 9-6 17.6 5-0

Copyright © 2007 John Wiley & Soas, Ltd.
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Figure 6. Series of maps showing SCA values > 5300 m*> m~' for each flow-routing algorithm and 1:24K DLG in inset A in Figure |

Table II. Basic statistics for sampled input data (N = 690)

Input data and Mean Standard deviation Minimum Maximum
units (where appropriate)

ELEV (m) 364-84 189-41 2-00 764-50
SLOPE (degrees) 2223 10-73 0-00 52-18
PROFC (m/m?) —0-17 1:93 —10.74 825
PLANC (m/m*) 0-06 2.05 —7.48 13415
RDPRX (m) 12-86 5.89 0-00 6243
SOLAR (*10%J/m*year) 1024-60 206-09 369-50 1300-32
WET 728 196 4.51 18-56
SED 3.46 1-43 —12-78 9.32

Table Itl. Correlation coefficients for pairs of topo-climatic attributes (N = 6%0)

Attributes ELEV SLOPE PLANC PROFC RDPRX WET SED SOLAR
ELEV — — — — — — — —
SLOPE 0-31 — — — — — — —
PLANC -0-04 0-00 — —_ — — —_ —
PROFC 010 =001 —-0-44 — — — — —
RDPRX —0-06 0-15 043 -033 — — — —_
WET —0-15 —0.42 0-57 -0.34 0-42 - — —
SED 0-11 0-51 0-53 —0-32 0-53 0-49 — —
SOLAR —0-02 —0-15 -0-11 0-10 —0-04 -0-04 —0-18 —
Copyright © 2007 John Wiley & Sons, L. Hvdrol. Process. 21, 1026—1044 (2007)
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Figure 7. Maps showing the eight topo-climatic attributes in inse( A in Figure | (hat were nsed in the fuzzy k-means classification. Gray scales range
from low values (white color) o high values (dark colors)

at the 690 sample points. These results indicate relatively
weak or nonexistent correlations for 24 of the 28 pairs of
variables, such that these are not likely to cause problems
in the subsequent analysis.

Table IV shows the mean topo-climatic attribute values
for each of the six classes while Table V shows (he
ranges for the same variables. Although there were many
overlapping values, this resolt was expected and the
presence of overlapping values did not interfere with
the identification and interpretation of the final landscape
classes.

Figures 8 and 9 show the fuzzy k-means membership
values calculated for each of the six landscape classes in

Copyright © 2007 John Wiley & Sons, Ltd.

insets A and B, respectively. These two areas were used
along with the statistics summarized in Tables 1V and V
to help clarify the differences between the six classes as
follows:

e Class 1 consists of coastal plains/gentle slopes because
it has the lowest elevations, Jowest slopes, and rel-
atively high topographic wetness index. There is a
small number of cells with high membership values
for this class in inset A (Figure 8) in contrast to inset |
B (Figure 9) where 50% of the grid cells are high-.
lighted in black and represent flat and gentle sloping
areas along the coast.

Hydrol. Process. 21, 10261044 (2007)
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Figure 8. Maps showing the landscape class memberships in the inland area (inset A in Figure 1). Values range from 0 (low; white) to | (high: black)

Table I'V. Cluster centers for six landscape classes

Input Class Class Class Class Class  Class
data 1 2 3 4 5 6

ELEV 17814 195-34 382.77 44040 44455 454-06
SLOPE 7-47 16-56 2050 2972 2690 24.85
PROFC 010 -046 -193 -0-5% —0.19 1-34
PLANC —0-27 0-44 3.75 0-19 005 -2-08
RDPRX 7-17 2238 1924 1515  13.84 2-03
WET 7-69 825 10-82 6-64 674 5-63
SED 1.50 3-60 5-53 396 3.80 293
SOLAR 1102-08 108283 972-13 720-18 1154-82 1064.24

o Class 2 consists of moderately steep lower valley slopes
given the relatively low mean elevation, moderate
slopes, and tendency for this class to occur immediately
upsiope of class 1 in Figures 8 and 9.

o Class 3 consists of stream channels because these grid
cells had the highest mean sediment transport capacity
index, lowest profile curvature, and largest planform
curvature values (Table IV).

e Class 4 consists of steep north-facing slopes because
the cells had the sieepest slopes and lowest mean solar
radiation index values.

Copyright © 2007 John Wiley & Sons, Ltd.

e Class 5 consists of steep south-facing slopes because
these cells recorded the largest mean solar radiation
index and second steepest slopes. Figure 8 shows a
series of alternating north- and south-facing hillslopes
that represent classes 4 and 5.

o Class 6 consists of hilltops/ridgelines given the short
distance to ridgelines and convex profile curvatures.
The final map in Figure 8§ shows the ridgelines as
a series of linear features and therefore shows the
watershed boundaries in this part of the Santa Monica
Mountains.

Figure 10 shows the final crisp classification for insets
A and B. These maps were produced by choosing the
maximum membership value for each cell and assigning
the cell to that class. The study area is divided into six
distinctive landscape classes in both maps. The first map
(inset A) shows ridgelines that run from west to east
hugged by alternating bands of north- and south-facing
slopes. The stream channels (class 3) are visible with
gentle (class 1) and moderately steep (class 2) slopes
flanking the valley bottoms. The second (inset B) map
shows Jarge numbers of class 1 cells, some class 2
cells, few channel (i.e. class 3) cells, and much smaller

Hydrol. Process. 21, 1026- 1044 (2007)
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Table V. Cluster ranges for six Jandscape classes

Input data Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
ELEV 0-1-859-7 0-3-723.6 0-3-836-5 6-7-852-1 7-1-858-5 6-4—859.7
SLOPE 0-27-6 0-1-56-7 0-1-66-8 7-9-73-2 44-61-1 1-2-70-3
PROFC —7.8-11-1 —-12-8-114 —29-1-83 ~24-3-12-1 —164-14-2 —6-6-36-8
PLANC —9.8-7.1 ~4.7-64 -2:6-267 —9.0-13-0 —6-4-8.7 —27.5-6:1
RDPRX 0-807 0-84.9 0-666 0-766 0-54-1 0-34-14
WET 5-3-30-2 5-3-19-3 4-6-23-3 3-8-12.1 4-3~11-6 3.6-9:6
SED 0-80-1 0-1-1488-8 1-5-43736-8 7.5-2336-5 4-5-1374-1 0-4-4517
LAR 72-12-9 51-13-0 0-6-13.0 04-11-5 8-7-13.0 2-1-13.0
percentages of the other classes (as would be expected Steep south-facing slopes
on the coastal plain). Overall, this method assigned 20% — :
of the grid cells in the study area to the hilliop/ridgeline Number of Minimum Maximum Mean Standard
class and 44% of the cells to either the steep north- or cells deviation
south-faci.ng SlOpC classes. Smaller areas were classified DR 323089 1.07 18956825 50-71 344-06
as coastal plains/gentle slopes (14%), moderately steep Rho8 323989 7.07 24081002 64.00 72620
lower valley slopes (13%), and stream channels (8%). Doo 323989 1000  268053-16 7474 86178
FD§ 323989 7-03  277158-94 89-81 513.94
Variations in specific catchment area by crisp landscape  DEMON 323989 7-35  236130-02 66-52 426-78
class -
Table VI shows that the lowest mean SCA values
were associated with hilltops/ridgelines (class 1), the next Moderately steep lower valley slopes
lowest SCA \_/alucs were associated with steep north- Number Minimum Maximum Mean  Standard
and south-facing slopes (classes 2 and 3), and then of cells deviation
progressively larger mean SCA values were associated
with moderately steep lower valley slopes (class 4), D8 169173 7.07 1909520-13 544-67 19796-89
coastal plains/gentle stopes (class 5), and stteam channels Rho8 169173 7.07 214225025 79906 2347690
(class 6). The mean SCA values for streamlines are more Doo 169173 1000  1827493-00 790-89 18204.57
. . FD8 169173 4.65 1989181-38 65607 22591-25
than 1000 times larger than the equivalent values for ppvoN 169173 733 190382500 54).72 1857221
hilltops/ridgelines for all five algorithms.
The mean SCA values generated for each landscape
class with the five algorithms are ranked in descending  Coaqra) plains/gentle slopes
order in Table VII. These ranks show how D8 started
out with the lowest values in high elevation areas Number Minimum Maximom Mean Standand
but passed DEMON and later Rho8 near or in the of cells deviation
, L . D8 177787 707 221502025 232991 58059-13
Table VI. Basjc statistics for the six landscape classes Rho8 177787 7.07 2213440-25 2544-85 59710-61
Hilttops/ridecli Doo 177787 10.00 2214601-50 271839 5_7533_-74
ilftops/ndgchncs FD§ 177787 2:56  2315620:50 2723-64 65746-97
. . DEMON 177787 7-07 2123134.50 2240-48 54 506-36
Number of Minimbm Maximum Mean Standard
cells deviation
D8 256042 7-07 102000 11:17  9.80  Stream channels
Rho8 256012 707 2001000 1979  96-88
Doo 256012 1000 22181959 25.32  649-54 Number Mini- Maximum Mean Standard
FD8 256012 2-61 251862 3103  56-49 of cells mum devjation
DEMON 256012 7-07 535405 2901 39-85
D8 103888  7-07 2237670-25 39942.29 191625-53
Rho$ 103888 707 223603025 39021-15 189748-36
faci Doa 103888 1000 223676)-75 41371-32 195347-22
Steep north-facing slopes FDS 103888 652 234177675 4660097 22175786
Number Minimum Maximum  Mean Standard DEMON 103888 7:45 2214353.25 36517.30 17553455
of cells deviation
D8 231180 7-07  1331440.13 5994 2772-17 cells crossed by stream channels. ¥D8, in contrast,
ghos %g} }gg 1(7)3;7) :ggi?g?;g 3;2(3) ggéggg generated the highest SCA values everywhere except
Flgg 311180 638 1388653:38 104-32 2%96-00 for the moderately steep lower valley slope class. Rho8
DEMON 231180 721 102434825 8025 213609 Produced moderate SCA values except for the moderately

Copyright ©® 2007 John Wiley & Sons, Lid.

steep lower valley slope class. Doo generated relatively
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Table VII. Mean SCA values ranked by flow-routing algorithm and landscape class

Hilltops/ridgelines North-facing South-facing Moderately Coastal Stream
slopes slopes steep lower plains/gentle channels
valley slopes slopes
D8 5 5 5 4 4 3
Rho8 4 3 4 I 3 4
Doo 3 2 2 2 2 2
FD8 1 1 I 3 ! ]
DEMON 2 4 3 5 5 5
Magnitade 2.78 1-74 1-77 1-48 1-22 1-28
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Figure 9. Maps showing the landscape class memberships along the coast (inset B jn Figure 1). Values range fromi 0 (low; white) to 1 (high; black)

high SCA values in all but the hilltop/ridgeline class.
DEMON generated relatively high SCA values along
hilltops and ridgelines but produced the lowest mean
SCA values on lower valley slopes, coastal plains, and
in stream channels. The last row of Table VII shows the
magnitude of differences in mean SCA values obtained
by dividing the highest mean SCA value by the lowest
mean SCA value in each landscape class and points to
a reasonably consjstent pattern in which the magnitude
diminishes from the top of the landscape (i.e. cells
classified as hilltops and ndgelines) to sea level (i.e. cells

Copyright © 2007 John Wiley & Sons. Lid.

classified as stream channels and coastal plains/gentle
slopes).

The difference of mean parametric matched pairs #-test
results, summarized in Table VIII, show some important
trends about the variability of SCA on different parts
of the landscape. The ¢-test values marked with a show
those instances when the nujl hypothesis can be rejected
at the 1% level of significance and those marked with
b indicate those instances when the null hypothesis can
be rejected at the 5% level. The null hypothesis that the
mean difference is not significantly different from zero

Hydrol. Process. 21, 1026—1044 (2007)
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Figure 10. Maps showing the crisped landscape classes in insets A and

B in Figure |

Table VIII. Difference of means matched pairs parametric /-test

results

Class 3—Stream channels
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D8 Rho8 Doo FDB DEMON
D8 — — — — —
Rho8 1.02 — — — —
Doo —-0.94 -1.15 — — —
FD8 —1.82 —1.44 .82 — —
DEMON 2.40° 0.08 .17 2717 —
Class 4-—North-facing slopes

D8 Rho§ Doo FD8 DEMON
D3 — —_ — — —
Rho8 -1.04 — — — —
Doo —2.200  —1.42 — — —
FD8 4.000  —3.33>  —1.08° — —
DEMON  -3.78* -1.09 0-76 3.08° —
Class 5—South-facing slopes

D8 Rho8 Doo FD§ DEMON
D8 — — — — —
Rho8 —0-94 — — — —
Deo ~2.24b 0-40 — — —
FD8 =512 045 —-2.37° — —
DEMON  -346* 0-50 0-71 3.91% —
Class 6—Hilltops/ridgelines

D8 Rho8 Doo FD8 DEMON
D8 — — — — —
Rho8 -3.5 — — — —
Doo -10-97* t-38 — — —
FD8 —594 -3.67° =344 — —
DEMON  -10.93* -522" -6.8]* 1-16 —

Class 1—Coastal plains/gentle slopes

D8 Rho8 Doo FDS§ DEMON
D3 — — — — —
Rho8 -1.61 — — — —
Doo 0-98 0-99 — — —
FD8 —1.13  —1.05  —1.00 — —
DEMON  —0.19 101  -0-98 101 —

Class 2—Moderately steep lower valley slopes

D8 Rho8 Doo FD8 DEMON
D§ — — - — —
Rho8 (-78 — — — =
Doo 085 —196 — — —
FD8 —-038 —226> —1-16 — —
DEMON  —0.55 =2-16® —1-19 0-16 —

was tejected in 8 of 10 instances for hilltops/ridgelines
but zero times for coastal plains/gentle slopes. Overall,
the results summarized in Tables VII and VIII indicate

Copyright © 2007 John Wiley & Sons, Lid.

* Null hypothesis rejected at 1% level of significance.
> Null hypothesis rejected at 5% level of significance.

that the landscape classes can be divided into two
groups based on the SCA values calculated with the
five flow-routing algorithms. The first group consists of
the high elevation landscape classes— hilltops/ridgelines
plus steep north- and south-facing slopes—for which the
null hypothesis was rejected in >50% of the cases and
the second group consists of the low elevation landscape
classes—moderately steep lower valley slopes, stream
channels, and coastal plains/gentle slopes—for which the
null hypothesis was rejected in <20% of the cases.

The counts sumumarized in Table 1X display the vari-
ability in the performance of the five flow-routing algo-
rithms in these two groups of landscape classes in more
detail. The SCA values estimated with Rho8 and Doo
were most like each other (the null hypothesis was never
rejected) in the three high elevation landscape classes. D8
and Rho8, Rho8 and DEMON, and Doo and DEMON
started out differently (the null hypothesis was rejected

Hydrol. Process. 21, 1026~1044 (2007)
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at the 5% level of significance for hilltops/ridgelines) but
produced similar results on steep north- and south-facing
slopes (Table VII). The SCA values estimated with D8
were never similar to those produced with Doo, FD§,
and DEMON (the null hypothesis was rejected for all
three high elevation classes) and similar results were
obtained for FD8—the counts in Table 1Xa show that
the null hypothesis was rejected in all three cases for
D8 and Doo, and in two of three cases for Rho8 and
DEMON.

Table IX. Number of times null hypothesis was rejected for three
groups of landscape classes
(2) High elevation landscape classes

D8 Rho8 Doo FD38 DEMON
D8 —
Rho8 1 —
Doo 3 0 —
FD8 3 2 3 —
DEMON 3 1 | 2 —_
(b) Low elevation landscape classes
D8 Rho8 Doco FD8 DEMON
D§ —
Rho8 0 —
Doo 0 0 —
FD38 0 1 0 —
DEMON 1 1 0 1 —_
{¢) All landscape classes
D8 Rho8 Doo FD8 DEMON
D8 —
Rho8 1 —
Doc 3 0 —
FD8 3 3 3 —
DEMON 4 2 1 3 —

J.P. WILSON, C. S.

LAM AND Y. DENG

The counts for the three low elevation landscape
classes summarized in Table IXb point to a very different
story. The null hypothesis was never rejected for Doc and
rejected on only one of four occasions for D8. Rho8, FD8,
and DEMON produced the largest differences—Rho8
and FD8 performed like the other flow algorithms in two
of four cases and DEMON performed like the other four
algorithms in only one of four instances.

The counts across all six landscape classes summarized
in Table [Xc¢ show that Rho8 and Doo were most like
each other—the null hypothesis was never rejected for
this pair of algorithms—followed by the D8/Rho8 and
Doo/DEMON pairs—the null hypothesis that the mean
difference was not significantly different than zero was
rejected for only one of six landscape classes in these
instances. These counts also show that D8 and DEMON
were least like each other, since the null hypothesis was
rejected in four of six landscape classes for this pair of
flow-routing algorithms.

The comparisons discussed thus far are good from the
point of view that they show how often and where these
different algorithms performed the same or not, but they
fall short of indicating which algorithms make the most
sense in terms of hydrologic theory and/or observation. A
further look at the distribution of ‘low flow’ and ‘chanpel’
cells (using the same definitions used in Figures 5 and 6)
across the six landscape classes provides some additional
insights about the performance of the five flow-routing
algorithms.

Table X highlights several noteworthy features about
the distribution of low flow cells predicted with the five
flow algorithms across the six landscape classes. First,
the oumber of low flow cells predicted with the five
flow-routing algorithms varied from 16917] (Rho8) to
33756 (DEMON). Second, the percentage of low flow
cells in the hilltop/ridgeline class varied by a factor of
five—from a low of 9% for DEMON to a high of 45%
for D8 and, in general, these percentages indicate the
presence of a series of broad hilltops and ridgelines in the
study area. Third, Rho8 predicted >5000 low flow cells

Table X. Distribution of source cells (SCA < 10 m? m~'") by landscape class

Topo-climatic class Number of cells

Percentage of cells with SCA < 10 m*m™!

D8 Rho8 Doo FD8 DEMON
Hilltops/ridgelines 256012 114,186 79789 64966 39215 23583
(44-6%) (31-2%) (25-4%) (15-3%) (9-2%)
Steep south-facing slapes 323989 1686 25568 481 107 91
(0-5%) (7-9%) (0-1%) (0-0%) (0-0%)
Steep north-facing slopes 231180 5630 18584 331 72 86
(2-4%) (8-0%) (0:1%) (0-0%) (0-0%)
Moderately steep lower valley slopes 169 173 37 8245 175 15 9
(0-0%) (4-9%) 0-1%) {0-0%) (0-0%)
Coastal plains/gentle slopes 177787 39893 36526 28995 16709 9960
(22-4%) (20-5%) (16-3%) (9-4%) (5:6%)
Stream channetls 103 888 35 459 94 62 27
(0-0%) (0-4%) 0-1%) (0-1%) (0-0%)
Total area 1262029 161467 169171 95042 56180 33756
(12-8%) (13-4%) (1-5%) (4-5%) (2-7%)

Copyright © 2007 John Wiley & Sons, Lid.
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Table X1. Distribution of ‘stream channel® cells (SCA = 5300 m? m~') by landscape class

Landscape class Number of cells  Percentage of cells with SCA > 5300 m? m™!
D8 Rho8 Doo FD8 DEMON
Hilltops/ridgelines 256012 0 13 15 0 (
(0-0%) (0-0%) (0-0%) (0-0%) (0-0%)
Stecp south-facing slopes 323989 8 158 133 11 5
(0-0%) (0:0%) (0-0%) (0-0%) (0-0%)
Steep north-facing slopes 231 180 5 137 159 6 6
(0-0%) (01%) (©-1%) (0-0%)  (0-0%)
Moderately steep lower valley slopes 169173 949 1439 1669 1013 810
0-6%) (09%) (1-0%) (06%) (0-5%)
Coastal plains/gentle slopes 177787 801 1221 1494 884 793
(0-5%) (0-7%) (0-8%) (0-5%) (0-4%)
Stream channels 103 888 26866 25744 27853 27896 25678
(27-6%) (24-83%) (26:8%) (269%) (24:7%)
Total area 1262029 28685 28766 31340 29885 27316
2:3%) (23%) (2-5%) (244%) (22%)
Percentage of ‘stream channel’ cells in stream channel class N/A 93.7 89-5 889 93.3 940

in five of the six landscapes and D8 predicted >5000
low flow cells for steep north-facing slopes—neither
result is realistic. Overall, these resulis suggest that the
Doo, FD§, and DEMON performed better than D8 and
espectally Rho8 —the latter algorithm, in particular, has
large numbers of low flow cells scattered across most of
the fuzzy k-means landscape classes.

Table XI summarizes the number of channe] cells pre-
dicted with the five flow-routing algorithms for each of
the six landscape classes. The number of predicted chan-
nel cells varied from 27316 (DEMON) to 31340 (Doo),
a difference of 13%. The six landscapes classes can be
divided into three groups—the three higher elevation
classes, the two middle classes, and the stream channel
class—1o facilitate closer examination of flow-routing
algorithm performance in this instance. This approach
suggests that DEMON performed best (given the Jow
oumber of channel cells in the three higher elevation
classes and highest percentage (94%) of channel cells
in the fina) stream channe} class), with the D8 and FD8
algorithms close behind. This last result was expected
because (1) the D8 algorithm was used to calculate the
topographic wetness index and sediment transport capac-
ity index inputs in the landscape classification (more on
this aspect later) and (2) the last pair of algorithms (D8
and FD8) should behave the same in these landscape
classes because the specification of a maximum cross-
grading area in TAPES-G meant that the FD§ algorithm
reverted to D8 when this upslope contributing area thresh-
old was exceeded. Rho8 and Doo performed the worst
given the 1000+ channel cells predicted in the middle
two landscape classes and 100+ channel cells predicted
in the three higher elevation landscape classes, which is
clearly not very plausible.

DISCUSSION AND CONCLUSIONS

The research reported here aimed to (1) calculate
the SCA with five different flow-routing algorithms;

Copyright © 2007 John Wiley & Sons, Lid.

(2) divide the study area into a series of repeatable
landscape units; and (3) compare and contrast the
performance of the five flow-routing algorithms across
these newly developed landscape units. Several tables
and maps of two areas—one along the coast and one
of an inland area—were utilized to identify and analyze
the variation in SCA across the study area and in ¢ach
of the six landscape classes. The results were presented
in three parts and this same sequence is used below to
discuss the wider significance of this work.

The first part described the vanability of SCA across
the whole study area. There are substantial differences
(Table I). Two sets of DEM pixels were identified—Ilow
flow cells (SCA < 10 m?> m™") near hilltops and ridge-
lines and cells crossed by stream channels (SCA >
5300 m? m~'")—and used to examine the similarities
and differences in the performance of the flow-routing
algorithms more closely. The two single-flow-direction
algorithms (D8 and Rho8) generated greater proportions
of low flow cells compared with the three multiple-flow
direction algorithms (Table X). There was much less vari-
ation between the five algorithms in tetms of the numbers
of pixels classified as stream chaonel cells: D8 predicted
the largest numbers of stream channel cells but FD8, Doo,
Rho8, and DEMON followed closely behind (Table X).
The similar results predicted with D8 and FD8 were to
be expected in this study because the version of FD8
implemented in TAPES-G switches to D8 when a uset-
specified maximum cross-grading (i.e. SCA) threshold is
exceeded.

The second part described the division of the study
area into six landscape classes. The results indicated that
the fuzzy k-means procedure worked well (Tables 1V and
V show six distinct classes and the maps reproduced in
Figures 8 and 9 show that the maximum membership
values produced distinct spatia) patterns). This method
is attractive because all eight topo-climatic attributes
used as inputs can be calculated from DEMs and it
is repeatable—meaning that someone starting with the
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same attributes and applying the same classification algo-
rithm to the same study area is likely to produce the
same classification. Burrough er al. (2001) produced a
similar classification with coarser resolution DEMs for
the Greater Yellowstone Area and demonstrated that the
resulting classification had important consequences for
the land cover present in that region. The landscape
classes were used to exanune the similarities and differ-
ences in the spatial patterns of the SCA estimated with
the five flow-routing algorithms in the cument study.

The inclusion of topographic wetness and sediment
transport capacity indices in this classification meant that
one flow-routing algorithm (D8) was used to perform the
classification and then used to evaluate the performance
of this same and four other flow-routing algorithms.
This is a potentially circular approach, especially since
some of our other work has shown that the number and
character of final landscape classes is dependent on the
number of input variables, choice of weijghts, distance
measure, etc. used in the fuzzy classification (Deng and
Wilson, 2006). To address this issue, we prepared four
additional eight-class landscape classifications—one for
each of the other four flow-routing algerithms—and used
the Kappa statistic to evaluate the level of similarity
between pairs of landscape class maps (Table X1I). These
results showed that the Rho8 landscape class maps were
very different than the other four (Kappa coefficient <
030 in all four instances) but that the D8, Doo, FDS, and
DEMON derived landscape class maps agreed with one
another more often than not (Kappa coefficient >0-50 in
all six pair-wise comparisons). Further work is needed to
document (1) the sensitivity of landscape classifications
to the choice of flow-routing algorithm and (2) whether
the results presented here are likely to persist across
landscape classifications generated with the same input
variables but different flow-routing algorithms.

Two features of the results that were generated when
the SCA was tabulated and compared by landscape class
in this particular study warrant closer scrutiny. The first
concerned the null hypotheses —whether the flow-routing
algorithms perform the same or differently in different
parts of the landscape. The flow-routing algorithms pro-
duced the largest variations at high elevations bat, as
elevation decreased, the flow-routing algorithms behaved
more like each other (Table ViIl). None of the previ-
ous studies comparing the performance of flow-routing
algorithms has identified these systematic variations.

Table X11. Kappa coefficients showing level of agreement for
pairs of landscape classifications generated with same topo-
graphic attributes but different flow-routing algorithms

D8 Rho8 Deo FD8 DEMON
D8 —
Rho8 0-30 —
Doo 0-64 0-30 —
FD8 0-61 0-29 0-68 —
DEMON 0-52 0-26 0:56 078 —

Copynght © 2007 John Wiley & Sons. Lid.
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We can also see whether the matched pairs r-test
results can be used to classify the five flow-routing
algorithms into three groups based on the number of
downsiope cells to which flow can be allocated. This
i1s of interest because Desmet and Govers {1996) and
Endreny and Woods (2003) grouped the flow-routing
algorithms in terms of the level of dispersion that was
possible: following their advice, D8 and Rho8 should
have emerged as a pair since both algoritbms direct
all flow to one downslope neighbor, DEMON and Doo
should have performed similarly because both algorithms
distribute flow (0 one or two downslope neighbors, and
FD8 should have generated unique results because it
directs flow to as many as eight downslope cells.

The results were mixed. The null hypothesis was
rejected in one of six landscape classes for the f-tests
comparing Rho8 and D8 (as would be expected), and
three of six and two of six times for Rho8 and FD8 and
Rho8 and DEMON, respectively. These results coupled
with the fact that the null hypothesis was never rejected
for Rho8 and Doo (this pair of algorithms was more like
each other than D8 and Rho8) would seem to contradict
the results reported in this other pair of studies. In
contrast, the nu)l hypothesis could not be rejected for
five of six landscape classes when comparing DEMON
and Doo, and this result supports some of the findings
of earlier studies. The null hypothesis was rejected 12
out of 24 times for tests involving FD8 across the
six landscape classes (Table VIH). At higher elevations,
the null hypothesis was rejected 10 of 12 times as
compared 10 only 2 of 10 Gmes at lower elevations.
The null hypothesis was rejected 3 of 12 times for 1ests
involving DEMON at lower elevations indicating that
this algorithm produced the most unique results in these
areas. Overall, the t-test results confirmed that the FD8&
algorithm is the most unique algorithm among the five
flow-routing algorithms but it was not clear how to rank
the remainder of the algorithms examined in this study.

The second feature of the r-test results that warrants
closer scrutiny involves the ‘low flow’ cclls and cclls
crossed by channels because these should have occurred
in specific landscape classes. The distribution of these
cells provides additional insights about the plausibility
of the SCA estimates. Most of the low flow cells should
occur in hilltop/ridgeline areas (class 6) and occasion-
ally along the margins of coastal plains (class 1). D8
and Rho8 scattered the low flow cells throughout the
six landscape classes, whereas the vast majority (>99%)
of the low flow cells predicted with Doo, DEMON,
and FD8 were confined to the hilltop/ridgeline landscape
class (Table X}. Similarly, the channel cells should have
been predicted in the stream channel landscape class, and
all five flow-routing algorithms did quite well in this
respect (Table XI)., Indeed, the five flow-routing algo-
rithms behaved more like cach other as flow descended
down the hillslopes given the fact that the number of
times the null hypothesis was rejected at the 5% level of
significance decreased going from the high (i.e. hilltops
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and ridgelines) to the low elevation parts of the landscape
(i.e. stream channels and coastal plains).

The effective management of the flooding, erosion,
water quality, and/or water supply problems that charac-
terize many regions of the world depends on our knowl-
edge of the behavior of stream channel networks and
their contributing areas (Moore er al., 1993). Endreny
and Woods (2003) summarized the scale issues and some
of the other problems that are encountered using DEM-
based flow-routing algorithms to predict flow paths and
SCAs. Their results (and similar results from several
other studies) suggest using one of the flow-routing algo-
rithms that disperse flow to one or two or three neigh-
boring cells. The results from this study partially support
these findings—Rho8 and to a lesser extent the D8 sin-
gle flow-routing algorithm produced too many low flow
cells in the wrong parts of the landscape to support their
adoption and use in these types of applications. Rho8 suf-
fered the most in this respect and also produces unigue
outcomes each time it is used and, as a consequence, it
should be avoided altogether. However, the D8 results
are perhaps more troubling given the widespread adop-
tion and vse of this particular flow-routing algorithm
in current geographic information systems. The results
comparing Doo, DEMON, and FD8 were less clear and
indicate that further work incorporating field observations
of runoff generation is required to determine whether one
or more of these algorithms should be preferred in spe-
cific types of landscapes and/or applications.
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