Mapping soil attributes for site-specific management of a Montana field

John P. Wilson
Damian J. Spangrud

Department of Earth Sciences
Montana State University, Bozeman, MT 59717-0348

Melissa A. Landon
Jeffrey S. Jacobsen
Gerald A. Nielsen

Department of Plant, Soil, and Environmental Science
Montana State University, Bozeman, MT 59717-0312

ABSTRACT

Conventional soil maps represent the distribution of soil attributes across landscapes but with less precision than is needed
to obtain the full economic and environmental benefits of site-specific crop management. This study quantifies the spatial
variability of three agronomically significant soil attributes: 1) thickness of mollic epipedon, 2) organic matter content (OM),
and 3) pH as related to soil survey map units, spectral data, and terrain attributes for a 20 ha field in Montana. Analysis of
Order 1 (1:7920-scale) Soil Survey map units indicates substantial variation in all three soil attributes. There was some
evidence that similar attribute values were clustered in the field (0.40-0.46 Moran’s Coefficients). Two spectral band ratios
explained 64% of the variation in OM across the field. GPS/GIS-derived wetness index, sediment transport index, elevation,
and slope gradient explained 48% of OM variation. Wetness index, slope gradient, and plan curvature combined to explain
48% of the variation in mollic epipedon thickness. Elevation and wetness index explained just 13% of pH variation. Two
spectral band ratios, specific catchment area, and wetness index combined to explain 70% of the variation in OM at 66
sampling sites. Four contour map representations of OM illustrate the sensitivity of the final maps to variations in input data
and interpolation method.

1. INTRODUCTION

Site-specific crop management requires precise knowledge of soil attributes and soil-landscape processes.>*'**¢ Detailed soil
maps at scales of 1:6,000 or 1:8,000 and spatially-variable soil attribute data are needed to guide site-specific crop management
in most landscapes.?’ However, conventional soil survey maps are commonly published at 1:24,000 and these maps seldom
delineate all of a field’s variability.”'* In addition, the range of soil attribute values reported for most mapping units is so
great that these data cannot adequately represent soil attribute variation.?'

Measurements of soil attributes are expensive, and numerous pedotransfer functions, image interpretations, and terrain attributes
have recently been proposed as cost effective alternatives. Pedotransfer functions combine regression and other geostatistical
techniques with soil texture, organic matter content, soil structure, and bulk density input data to predict agronomically
significant soil attribute values that vary across and within mapped soil units.?****** Remotely-sensed imagery may help with
the estimation of soil attributes because particle size distribution, structure, surface roughness, moisture content, OM, and the
abundance of carbonate minerals and iron oxides have all been shown to influence the reflectance captured by one or more
spectral bands."®* Wilcox et al. used Landsat Thematic Mapper (TM) images to estimate surface OM in the Palouse Region
of Eastern Washington and concluded that TM images could be used to predict OM values at non-sampled locations at a
fraction of the cost of field sampling.>* Other groups have used terrain attributes derived from digital elevation models
(DEMs) for this purpose. Klingebiel et al. used slope, aspect, and elevation to increase the accuracy of mapped soil unit
boundaries and thereby limit the within-unit variability, and several researchers have correlated soil properties with primary
and secondary terrain attributes that have physical meaning in an effort to improve soil attribute prediction.>'%*%2?7
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This paper aims to: (1) characterize the relationships between three soil attributes (thickness of mollic epipedon (dark topsoil),
OM, and pH) and soil survey maps, imagery and terrain attributes, and (2) demonstrate the potential for using soil maps,
images, or terrain data to describe soil attribute variation across a Montana farm field. Thickness of mollic epipedon, OM,
and pH are important agricultural soil attributes. They affect soil physical properties, soil fertility, plant nutrient supply, and
microbial activity and can be expected to vary across farm fields in Montana. Thickness of mollic epipedon is correlated with
production of vegetation in the northern Great Plains.* Thick dark colored epipedons are a "fossil record” of soil water
availability, root growth, and humus formation. Larson examined the influence of soil series on small-grain yield in Montana
and found that depth to calcium carbonate (CaCO,) and OM were positively correlated with grain yield and that pH was
inversely correlated with yield.”> These properties were also highly predictive of soil test phosphorus and available water-
holding capacity (AWC). Wilson et al. evaluated the performance of the Productivity Index (PI) model in four Montana fields
and found that an expanded model incorporating OM, depth to CaCO,, and cropping history terms in addition to the AWC,
bulk density, and pH terms in the original model explained 75% of the variability in grain yield.*

2. METHODS AND DATA SOURCES

2.1 Study Area Description

The study area consists of a 20 ha farm field located at the base of the Bridger Mountains near the community of Springhill,
Montana (T1N R6E, Section 18). It has a generally southerly aspect, moderate relief (43 m), and an average elevation of 1509
m (Figures 1B and 1C). A small intermittent stream runs through the field in a south-south-westerly direction (see bottom
half of wire-mesh diagram). The soils are mostly: 1) fine-silty, mixed Typic Argiborolls, 2) fine, mixed Argic Cryoborolls,
and 3) some coarse-silty, mixed Typic Ustochrepts that have been farmed with a grain-fallow rotation for about 50 years.

2.2 GPS Survey and Location of Sample Grid

Horizontal and elevation data were collected at 6,284 locations in September, 1991 with an Ashtech Sensor GPS receiver
mounted on a pickup truck and an Ashtech P-12 GPS receiver operating in kinematic mode (Figure 1A). A permanent
sampling grid was established (n = 70) and a 5.08 cm PVC neutron access tube was installed at each site to 200 cm below
the soil surface using a truck-mounted Giddings hydraulic probe. The locations and elevations of the neutron access tubes
were resurveyed in May, 1993 with an HP-48 data collector and Topcon GTS-303 total station.

2.3 Soil Sampling Procedures

Soil samples were collected and described in May, 1992. Field descriptions of the mollic, Bt, Bk, and 2C horizons including
their color, textural class, and percent clay were obtained from the cores removed for neutron access tube installation. The
cores were divided into 15 cm and 30 cm increments down to depths of 30 cm and 210 cm, respectively for laboratory
analysis. Soil samples were air-dried, ground, and screened through a 2 mm sieve prior to analysis. Soil pH (1:2), EC (1:2
mmbhos/cm), OM (%), Olsen P (mg/kg), K (mg/kg) were determined in the top 30 cm and NO,-N (mg/kg) was determined
for each depth increment to 210 cm. Only the thickness of the mollic epipedon, OM, and pH data are presented here.

2.4 Generation of Terrain Attributes

The GPS data were converted to a regular 10 m grid with ANUDEM' for subsequent analysis and display. This program
takes irregular point or contour data and creates grid-based DEMs. ANUDEM automatically removes spurious pits within
user-defined tolerances, calculates stream and ridge lines from points of locally maximum curvature on contour lines, and
(most importantly) incorporates a drainage enforcement algorithm to maintain fidelity with a catchment’s drainage network.''**

Primary terrain attributes were computed directly from the interpolated 10 m elevation grid (Figure 1C) with TAPES-G, a
grid-based method of terrain analysis that calculates slope, aspect, specific catchment area, profile, plan and tangential

curvature, and flow path length for each cell in a square-grid DEM.'* The maximum slope or gradient, B (in degrees), was
computed with a finite-difference algorithm from the directional derivatives by:

SPIE Vol. 2345/ 325

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/25/2016 Terms of Use: http://spiedigitallibrary.or g/ss/TermsOfUse.aspx



B.
A
1 z
LA
1 g .
° | e
—-—; . :
gt
— . . .
ot
. ) [==25=: SSS53Y
T EEEE :
E: 0 o 4
3 -
T C
D I R S W W
(‘||\\4\-
c
NOT TO SCALE ——EE
H
1
13 1P ) i
Immm.
SRR
Wiright Farm —-A—- 11117
Sprgcghill, Montsna 4 11 1T T T ¢
A
10m ocelle, vertical exageration = 2

Figure 1. Full GPS data set (A), contour map (B), and three-dimensional wire mesh diagram (C) for study area.
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B = arctan [(f? + ,)"’] 0]

Specific catchment area (A,) and flow path length were calculated with the FRho8 algorithm in upland areas above defined
channels and the Rho8 algorithm below points of channel initiation. The Rho8 (random-eight node) algorithm is a stochastic
version of the more common D8 algorithm (which allows drainage from a node to only one of eight nearest neighbors based
on the direction of steepest descent) and the FRho8 algorithm permits drainage from a node to multiple nearest neighbors on
a slope-weighted basis.?> The Rho8 algorithm produces more realistic flow networks than the D8 algorithm and the FRho8
algorithm permits the modeling of flow dispersion in upland areas, which is important in areas with complex topography.'®**
A minimum drainage area of 2 ha (approximately 10% of the study area) was used to initiate channel flow. The proportion
of flow or upslope contributing area assigned to multiple downslope nearest neighbors above these channels was determined
on a slope-weighted basis using methods similar to those proposed by Freeman® and Quinn et al.?*, so that the fraction of
catchment area passed to neighbor i is given by:

F, = Max (0, Slope;"') / £ [Max(0, Slope;"")] 1))
where Slope is the slope from the current node to the nearest neighbor.

Four additional terrain attributes that may help in predicting the spatial distribution of soil attributes are the wetness index,
w, the stream power index, , a sediment transport capacity index, T, and a landform curvature ratio, LCR. These compound
indices are computed from two or more primary attributes and, in their simplest forms, can be expressed as:

w = In(A/tanP) Q = Atanf 1 = (A/22.13)*¢ (sinf/0.0896)"* LCR = ¢/o - (3)

where A, is the specific catchment area (m’m™), B is the slope angle (degrees), ¢ is the profile curvature or curvature in the
direction of maximum slope (m), and o is the plan curvature (curvature traverse to this slope) (m). The first three equations
all assume that A, is proportional to the discharge per unit width () and that steady-state conditions apply."”**** The
compound topographic wetness index has been used to: (1) characterize the spatial distribution of zones of surface saturation
and soil water content in landscapes'®?, (2) map forest soils*, and (3) delineate the spatial variability of soil properties in a
toposequence in Colorado.2'#* The value of this index increases with increasing specific catchment area and decreasing slope
gradient, resulting in moderate values on hilltops (flat areas with low specific catchment area), high values in valleys (high
specific catchment area and low slope) where water concentrates, and low values on steep hillslopes (high slope) where water
drains more freely.® The stream power index is directly proportional to stream power, which is the time rate of energy
expenditure and so is a measure of the erosive power of overland flow.?*** The sediment transport index characterizes erosion
and deposition processes and, in particular, the effects of topography on soil loss."'® This index is applicable to three-
dimensional landscapes and is analogous to the length-slope factor in the Revised Universal Soil Loss Equation.’' Profile
curvature is a measure of the rate of change of the potential gradient and is therefore important for water flow and sediment
transport, whereas plan curvature is a measure of the convergence or divergence and hence the concentration of water in the
landscape.?? Dikau, for example, used slope, plan curvature, and profile curvature to delineate geomorphological relief units.®

The primary and secondary terrain attributes were used to construct grids in ARC/INFO (Environmental Systems Research
Institute, Inc., Redlands, CA) and a series of point-in-grid overlays were performed to extract terrain attributes at 67 soil
sampling sites. Three other soil sampling locations were lost when a new house was constructed along the western boundary
of the field and a new rectangular study area was defined.

2.5 Collection and Analysis of Remotely-Sensed Spectral Data

Spectral data were captured with a small plane and the ADAR System 5000 (Positive Systems, Inc., Kalispell, MT) when the
field was free of vegetation and stubble on 3 June, 1992. Blue (band 1; 450/80 nm center wavelength/bandwidth), red (band
2; 650/80 nm), red/near infrared (band 3; 700/40 nm), and near infrared (band 4; 850/80) bands were used. Differing amounts
of translation and rotation were removed and a 3 by 3 pixel window (one pixel = 2.08 m) was averaged in an effort to reduce
sample location error prior to analysis. Three bands were then ratioed to produce a 2-band image of 1/4 and 2/4 (which
correspond to ADAR’s blue/NIR and red/NIR bands, respectively) by:
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ratioed band DN = DN, / (DN, + 0.5) x 127 C))

where DN, and DN, are the first and second user-specified bands, respectively. This image was created to gauge the potential
of the ADAR scanner for identifying OM. Frazier and Cheng® have successfully used Landsat TM 1/4, 3/4, and 5/4 band
ratios to map soil organic carbon in the Palouse region of Eastern Washington; however, there is little correspondence between
Landsat TM spectral bands and those of the ADAR scanner. The bandwidths of the ADAR’s blue and red filters are much
wider than Landsat’s blue and red bands, and Landsat’s IR bands are beyond the ADAR’s range of spectral response. The
two ADAR band ratios used here mimic the Landsat TM 1/4 and 3/4 band ratios used by Frazier and Cheng.®

2.6 Preparation of Order 1 Soil Survey

An Order 1 soil survey map was prepared at a scale of 1:7920. Four major soil map units were reported in four slope classes
using a 0.25 ha minimum delineation (equivalent to 100 10 m by 10 m cells) from uncorrected aerial photographs and field
reconnaissance. Soil attributes were estimated from soil pits dug in the field and published series descriptions.

2.7 Statistical Analysis

The soils, terrain, image, and soil survey variables were exported to SAS to facilitate correlation and regression analysis. The
Krustal-Wallis H statistic, which is a non-parametric alternative to the F ratio for classical analysis of variance, was used to
compare the variation in soil attributes across Order 1 Soil Survey map units. The Moran Coefficient was used to measure
the spatial structure or autocorrelation for the three soil attributes. The Moran statistic varies between -1 (negative spatial
autocorrelation) and +1 (positive spatial autocorrelation) and measures the relationship among values of a single variable that
is due to the geographic arrangement of areal units or points on a map.'® The most commonly used methods for computing
spatial autocorrelation capture locational information in binary configuration tables. Sites are either adjacent to one another,
or not. Thickness of mollic epipedon, OM, and pH site values were interpolated to a regular 50 m grid using ARC/INFO’s
Inverse Distance Weighting (IDW) function and values from the three nearest sampling sites. Moran Coefficients were
computed with the method described by Griffith and Amrhein.'® Stepwise multiple regression was used to identify significant
relationships between the soil survey, terrain, and image variables (independent variables) and the variability in thickness of
mollic epipedon, OM, and pH (dependent variables). The F level for entry or deletion of an independent variable was set to
0.05. Statistical significance of the overall equation was determined by an F test. The t test was used to test the significance
of each independent variable, and the models were evaluated for over- or under-specification using Mallow’s Cp value. The
map algebra tools in ARC/INFO’s GRID module were used to prepare the final soil attribute maps.

3. RESULTS

Table 1 summarizes soil attribute values for the four map units and the entire field represented in the Order 1 Soil Survey
map (Figure 2). The values computed for the Krustal-Wallis test statistic exceeded the critical value at the 0.05 level of
significance (7.81 with 3 degrees of freedom) for all three soil properties indicating that: (1) the null hypothesis (that the
means were equal) is rejected, (2) there is evidence that the mean soil properties for at least one of the soil map units is not
equal to the others, and (3) only 5% of the time would one expect to obtain a Krustal-Wallis statistic that falls within the
critical region (7.81, ) when in fact the four soil map unit means are equal. However, these soil map units may not help
much with the interpolation of soil properties across the field because the minimum/maximum values and standard deviations
reported for the individual soil map units indicate there is substantial variation in thickness of mollic epipedon, OM, and pH
within map units.

Moran Coefficients of 0.40-0.46 indicate moderate clustering of similar values for the three soil attributes (Table 1). This
result suggests that kriging may be more appropriate than a simple inverse distance weighted interpolation scheme for
estimating thickness of mollic epipedon, OM, and pH values across the field. The three closest sampling sites and a 50 m
grid were used to approximate the spacing between the initial soil sampling sites and minimize any inflation in Moran
Coefficient scores caused by the conversion of the original site data to a regular 50 m grid with ARC/INFO’s IDW command.

The multiple regression results treating OM as the dependent variable show that ADAR band ratios 3/4 and 1/4 explained 64%
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Table 1. Soil attribute values for four map units and the entire field represented in Order 1 Soil Survey map.

No. of Statistics

samples Min. Max. Mean S.D. Median Moran’s 1
A. Thickness of mollic epipedon (cm)
Alpha silt loam 29 15 80 36.4 18.0 34 -
Beta silt loam 7 19 66 43.1 194 49 -
Gamma loam 9 24 126 733 36.9 64 -
Omega-Beta-Sigma complex 22 10 118 444 29.0 41 -
Entire field 67 10 126 44.7 273 41 045
B. OM (%)
Alpha silt loam 29 23 5.0 3.6 0.7 37 -
Beta silt loam 7 2.1 4.0 32 0.7 3.1 -
Gamma loam* 9 1.1 5.6 3.8 1.3 42 -
Omega-Beta-Sigma complex 22 1.7 5.6 33 1.0 34 -
Entire field 67 1.1 5.6 3.5 0.9 35 046
C. pH
Alpha silt loam 29 5.6 6.6 6.0 0.2 6.0 -
Beta silt loam 7 5.7 7.1 6.2 04 6.2 -
Gamma loam 9 59 7.1 6.3 04 6.2 -
Omega-Beta-Sigma complex 22 5.8 83 6.7 09 6.4 -
Entire field 67 5.6 83 63 0.6 6.2 0.40

* This soil map unit included one soil sampling site (#31 in Figure 2) with a very low organic matter content
(1.1%). The next lowest OM computed for this unit was 2.6% (#54 in Figure 2). Site #31 is located near the
outlet of a culvert that delivers runoff from upslope areas to the east of the field and was therefore omitted from
the OM multiple regression analyses that produced the results reported in Table 2. The mean and median OM

for this soil map unit without #31 were 4.1% and 4.3%, respectively.

of the variation in OM across the field (Table 2). The Palouse results using Landsat TM 3/4 and 5/4 band ratios obtained
by Frazier and Cheng® and Wilcox et al.** suggest an even higher R? might have been obtained in this study if the ADAR
scanner had been able to replicate Landsat TM’s IR bands. This shortcoming partially negates the timing (ADAR imagery
is obtained with cameras mounted in small planes and can be collected on user-specified dates) and pixel resolution (the
ADAR system can collect up to four bands of imagery at various pixel sizes starting at 1 m?) advantages of the ADAR system

compared to Landsat TM data.

The multiple regression results treating OM, thickness of mollic epipedon, and pH as dependent variables and numerous terrain
attributes as independent variables are also summarized in Table 2. Four terrain attributes combined to explain almost as much
of the variation in OM (48%) as the two ADAR band ratios. This particular regression model included one interaction term
(slope x aspect) because the DEM cells (slopes) were divided into north- and south-facing slopes. The exact meaning of the
terms in this regression model is best interpreted by examining the response functions for north- and south-facing slopes

separately. The response function for north-facing slopes can be written in equation form as:
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Figure 2. Order 1 Soil Survey map

E(Y) = 24..431 + 0.3883 WI - 0.0455 STI - 0.0153 ELEV + 0.328 SLOPE %)

where Y is predicted DM, WI is the wetness index, STI is the sediment transport index, ELEV is elevation in meters above
sea level, and SLOPE is slope gradient in degrees. This equation shows how OM varies positively with wetness index and
slope, and inversely with elevation and sediment transport index on north-facing slopes. The SLOPE term disappears from
the response function for south-facing slopes (because the ASPECT indicator variable was set to 0 in these cells) as follows:

E(Y) = 24.1831 + 0.3883 WI - 0.0455 STI - 0.0153 ELEV v ©)
This response function indicates how predicted OM varies positively with wetness index and inversely with elevation and

sediment transport index on south-facing slopes. These results are similar to those of Moore et al. who explained 48% of the

variation in OM in a 5.4 toposequence (field) in Colorado using wetness index, stream power index, and aspect as independent
variables.?
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Table 2. Multiple regression results

Parameter Partial Model

Step Variable estimate R? R? Prob>F

Dependent variable:

OM (%)

INTERCEPT 8.5791
1 BAND2/BAND4 -0.0685 0.550 0.550 0.0001
2 BANDI1/BAND4 0.0533 0.093 0.643 0.0001

Dependent variable:

OM (%)

INTERCEPT 24.1831
1 WETNESS INDEX 0.3883 0.332 0.322 0.0001
2 SED. TSPT INDEX -0.0455 0.068 0.400 0.0099
3 ELEVATION -0.0153 0.050 0.449 0.0210
4 SLOPE2* 0.0328 0.035 0.484 0.0469

Dependent variable:

THICKNESS OF MOLLIC EPIPEDON (cm)

INTERCEPT -86.1411

1 WETNESS INDEX 15.9640 0.389 0.389 0.0001

2 SLOPE 2.0395 0.045 10.434 0.0274
3 PLAN CURVATURE -1.0132 0.041 0.475 0.0300

Dependent variable:

pH

INTERCEPT 33.6485
1 ELEVATION -0.0177 0.069 0.069 0.0318
2 WETNESS INDEX -0.0903 0.059 0.128 0.0407

Dependent variable:

OM (%)

INTERCEPT 7.0003
1 BAND2/BAND4 -0.5640 0.550 0.550 0.0001
2 BANDI1/BAND4 0.0408 0.093 0.643 0.0001
3 SPECIFIC CATCH. AREA -0.0002 0.032 0.675 0.0128
4 WETNESS INDEX 0.2347 0.029 0.704 0.0222

* One interaction term (SLOPE2 = SLOPE x ASPECT) appears in the second OM regression equation. This
term applies to north-facing slopes because the indicator variable (ASPECT) was set to 0 on south-facing slopes

and to 1 on north-facing slopes.
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Three terrain terms (wetness index, slope gradient, and plan curvature) explained 48% of the variability in thickness of mollic
epipedon and two terrain terms (elevation and wetness index) combined to explain only 13% of the variability in pH (Table
2). The thickness of mollic epipedon results matched those of Moore et al.2 who predicted 50% of the variation in A (mollic)
horizon depth using slope and wetness index in Colorado and Bell et al.> who explained 51% of the variation in A horizon
depth using wetness and drainage proximity terms for a 20 ha study site in west-central Minnesota. However, Moore et al.
were also able to predict 41% of the variation in pH using slope gradient and plan curvature for their Colorado toposequence.?

The final regression model reproduced in Table 2 used the image and terrain variables to predict OM across the field. The
two band ratios and two terrain variables (specific catchment area and wetness index) combined to explain 70% of the
variation in OM at the 66 soil sampling sites (one site was dropped for the reasons noted in Table 1). This model shows that:
(1) the image attributes were better than the terrain variables in explaining the variability in OM, and (2) the terrain variables
were able to explain approximately 15% of the residual variability left unexplained by the two band ratios. This may not be
a fair comparison because of the different cell resolutions (sizes) that were used for the ADAR imagery (6.24 m by 6.24 m
cells) and terrain analysis (10 m by 10 m cells). A higher resolution DEM could have been generated here and may have
produced slightly better correlations. However, Moore et al. have argued that: (1) it is unrealistic to expect such soil-landscape
(terrain analysis) methods to explain more than 70% of the variability in soil properties because of variations in soil-related
processes (such as hydrology and soil erosion and deposition) that occur at larger scales (i.e., over shorter distances) than the
resolution of the DEM that is used, and (2) the optimum scales for studying and characterizing landscape processes affecting
the development of the soil catena are unknown and represent a major research need.”’ No attempt was made to generate a
higher resolution DEM in this study given this state of affairs and the fact that the GPS survey used to generate the DEM did
not include the entire catchment drained by the ephemeral channel that flows in a south-south-westerly direction through the
southern half of the field (Figure 1C).

The final maps show OM delineated in 1% intervals across the field. The first map (Figure 3A) was generated with
ARC/INFO’s IDW function and OM values at the three nearest soil sampling sites. This map shows less variation than the
others because OM values at 66 sampling sites spaced roughly 50 m apart were used to estimate OM in 65 50 m by 50 m
cells. The second map (Figure 3B) was produced with the regression equation incorporating the two ADAR band ratios and
shows the most detail because 2.08 m pixels (cells) were used. The final two maps (Figures 3C and 3D) were produced with
the regression equations incorporating terrain and image/terrain attributes as independent variables and 10 m cells (see Table
2 for regression equations). As expected, the low and high OM values in Figure 3C follow ridge and channel features;
however, this pattern was modified and OM estimates increased when both image and terrain attributes were used (Figure 3D)
since this model combined data layers with different cell resolutions. Overall, the four maps show how different data sources
and analytical methods may lead to different estimates of economically- and environmentally-significant soil properties such
as OM.

This spatially varying soil attribute information is needed to divide farm fields into management units. The management units
can be used with automated navigation (guidance) systems and variable rate spreaders to apply only those quantities of seed,
fertilizers, and pesticides that match the land resource potential and/or the farmer’s yield goals. The difficulty, expense, and
uncertainty currently involved in delineating management units will limit the adoption of these technological aids and minimize
the economic and environmental advantages that might follow from their adoption in the immediate future. More work is
needed to identify significant soil properties and to compare and contrast alternative data sources and methods for estimating
them and dividing farm fields into management units.
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Figure 3. Organic matter content (OM) contour maps produced by linear interpolation of measured data (A), a regression
function incorporating ADAR band ratios (B), a regression function incorporating selected terrain attributes (C), and a
regression function combining the ADAR band ratios and selected terrain attributes (D).
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