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attributes derived from digital elevation models (DEMs) for this puf
Klingebiel et al. (1987), for example, used slope, aspect, and '
increase the accuracy of mapped soil unit boundaries and thereby limif
within-unit variability, whereas Odeh et al. (1991) and Moore et al. (14
1993b) have taken a slightly different approach and correlated soil prope
with simple to measure primary and secondary terrain attributes  that
physical meaning in an effort to improve soil attribute prediction.

Primary terrain attributes are calculated directly from elevation
include variables such as slope gradient, aspect, specific catchment§
flowpath length, plan and profile curvature (Moore et al., 1991). Seco
attributes combine two or more primary attributes and are often
characterize the spatial variability of specific processes occurring
landscape. Moore et al. (1993a), for example, defined three compound if
(a wetness index, ; a stream power index, €2; and a sediment transport i
T) and described their potential use in predicting the spatial distribution of
properties as an aid to soil specific crop management.

These primary and secondary terrain attributes are usually computed
DEMs. A DEM is an ordered array of numbers that represents the
distribution of elevations above some arbitrary datum in a landscape.
al. (1993a) review the various sources of DEMs and note that Global Posi
System (GPS) technology provides a rapid and relatively inexpensive Wl
obtaining data for the development of DEMs. This new technology @
important advantages in terms of scale and accuracy for soil specific
applications given that the traditional sources of elevation data (e.g., |
scale USGS contour maps) and the 30 m DEMSs derived from them
values rounded to the nearest meter offer data at too coarse a resolution
site-specific farming applications. There is now a total of 24 GPS sate it
orbit and 5-10 of these satellites are visible to a receiver at any one time
stationary receiver used in conjunction with a mobile receiver (in different
kinematic mode) may provide X,Y,Z measurements down to centimete

(Tyler, 1993). The GPS operator determines the number and pattern (Spré
elevation data collected. Our research objective was to assess the imp
varying the number and pattern of GPS data on computed topographic
for a farm field in Montana.

METHODS AND DATA SOURCES
Elevation Data

Elevation data were collected at 6,284 different locations in 1991 wi
Ashtech Sensor GPS receiver mounted on a pickup truck and an Ashtec
GPS receiver operating in kinematic mode as part of a larger study e
potential nitrate contamination of ground water (Fig. 20-1a). These ele
data were converted to a regular 10 m grid with ANUDEM (Hutchinson, |
for subsequent analysis and display. This program takes irregular p
contour data and creates grid-based DEMs. ANUDEM automatically remoyg
spurious pits within user-defined tolerances, calculates stream lines and rid;




W

odels (DEMs) for
slope, aspect, and
oundaries and thereb
1991) and Moore e
ch and correlated s
lary terrain attribuy
attribute prediction,
Idirectly from elevati
Spect, specific catch
Moore et al., 1991);
tributes and are o
fic processes oceu
defined three comp
and a sediment tr.

1 the spatial distribution

rement,

butes are usually ¢

bers that represen

datum in a landscap

and note that Global P

I relatively inexpe
This new techn

wuracy for soil specifie

f elevation data (e

Ms derived from |

i
100 coarse a resolution f

" a total of 24 GP,
a receiver at any
sbile receiver (in d
1ts down to centimet
number and patter
¢ was to assess
omputed topograpk

OURCES

xrent locations in

Ip truck and an
tof a larger study ¢
Fig. 20~1a). Thy
{NUDEM (Hute :
ram takes irreg
“M automatically s
tes stream lines and

_:. A Springhill, Montana

) TERRAIN ATTRIBUTES

i o

LOCATION MAP

T TO SCALE

Wright Farm

e

L. Full GPS data set (a), contour map (b), and three-dimensional \Iwrc
l { i ‘epresents 7 values
diagram (c) for study area. Fig. 2{?--| represents 6,284 XY .7

ned with a truck-mounted GPS receiver.




288 WILSON ET Al

from points of locally maximum curvature on contour lines, and (mo
importantly) incorporates a drainage enforcement algorithm to maintain fideli
with a catchment’s drainage network (Hutchinson, 1989: Moore et al., 19934
The 10 m DEMs were later converted to | m contour maps by converti
the ANUDEM ASCII files consisting of X,Y,Z values to lattices in ARC/INF
(Environmental Systems Research Institute, Inc., Redlands, CA) using .
LATTICECONTOUR command to convert these lattices into contour méj
Hence, the 1 m contour map reproduced in Fig. 20-1b was created in two s
(1) all 6,284 X,Y,Z values were used by ANUDEM to create a 10 m gri
(2) this grid was brought into ARC/INFO as a lattice and used to cre
detailed contour map. :

Terrain Analysis

TAPES-G is a grid-based method of terrain analysis that calculates slop
aspect, specific catchment area, profile, plan and tangential curvature, and
path length for each cell in a square-grid DEM (Moore, 1992). Sp
catchment areas can be estimated using either the D8 algorithm that alloy
drainage from a node to only one of cight nearest neighbors based on |
direction of steepest descent, the quasi-random Rho8 algorithm, or the {?_-
algorithm that permits drainage from a node to multiple nearest neighbors of
slope-weighted basis.  The Rho8 algorithm produces more realistic i
networks and the FRho8 algorithm permits the modeling of flow dispersion
upland areas, which is important in arcas with convex topography (Moore, 19
Moore et al., 1993d). Other programs use TAPES-G outputs to compute |
spatial distribution of net radiation and minimum/maximum temperat
complex topography (SRAD), spatially distributed wetness indices b
either a steady-state or quasi-dyn: subsurface flow assumption (DYNWE
or WET), and the spatial distribution of soil loss and erosion and deposit
potential in a catchment (EROS) (Moore, 1992). _

Three primary attributes (clevation, slope gradient, and specific cate
area) and one secondary attribute (steady-state wetness index) were computed
this study. Elevation was estimated on a 10 m grid spacing with ANUD|
The maximum slope or gradient, B (in degrees) was computed with a fin
difference algorithm in TAPES-G from the directional derivatives by:

B = arctan [(f* + £,5)*°]

Specific catchment area was calculated with the FRho8 algorithm that allg
flow to be distributed to multiple nearest-neighbor nodes in upland areas
defined channels and uses the Rho8 or D8 algorithms below points of ch
initiation. The points of channel initiation are designated (indirectly) by th
when they specify the maximum grading area in TAPES-G since this
represents the minimum catchment area needed to initiate channel flow
minimum drainage area of 20,000 m? (approximately 10% of the study ared)
arbitrarily used to initiate channel flow in this study. The proportion of flo
upslope contributing area assigned to multiple downslope nearest neight
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nels was determined on a slope weighted basis using methods
proposed by Freeman (1991) and Quinn et al. (1991), so that the
ment area passed to neighbor i is given by:

0, Slope,"') / £ [Max(0, Slope;"")] (2)

the slope from the current node to the nearest neighbor.

ound topographic wetness index, In(A./tanf), has been used to
spatial distribution of zones ol surface saturation and soil water

pes (e.g., O’Loughlin, 1986; Moore et al., 1988), 1o map foresl
et al.,, 1991), and to characterize the spatial variability of soil
toposequence in Colorado (Moore et al., 1993a, 1993b). This
on of the wetness index incorporates two important assumptions,

ient of the piezometric head, which dictates the direction of
Jis parallel to the gradient of the surface topography; and (ii)

aditions apply, although Barling (1992) and Barling ct al. (1994)

a quasi-dynamic version Lo overcome some of the limitations

2 assumption.
y-state wetness index is used here to illustrate the effects of the
tern of elevation data on a hydrologically important compound
ribute. The value of this index increases with increasing specific
and decreasing slope gradient, resulting in moderate values on
with low specific catchment area), high values in valleys (high
nt area and low slope) where water concentrates, and low values
es (high slope) where water drains more freely (Moore et al.,

Study Area and Evaluation Methods

zy area consists of a 20 ha (50 acre) farm field located at the base
ountains near the community of Springhill, Montana (TIN RGE,
thas a generally southerly aspect, moderately strong relief (43 m),
> elevation of 1509 m (Fig. 20-1b and 20-lc). Minimum,
mean values for selected terrain indices are summarized in Table
intermittent stream runs through the field in a south-south-
fion (see bottom half of wire-mesh diagram). The soils arc mostly
chic and Udic Haploborolls and Agriborolls that have been farmed
allow rotation for about 50 years.
mary goal was lo determine how few GPS input data would be
sserve key information about the computed terrain surfaces, since
storage, and analysis may add additional costs to soil specific
ent applications. Elevation, slope gradient, specific catchment
teady-state wetness index are treated as key information and the
comparisons of various grids developed with partial GPS input data
urfaces that were constructed from all 6,284 GPS data (Fig. 20-1a).




290 WILSON ET F‘:_ MPUTED TERRAIN ATTRIBUT!

Table 20-1. Computed terrain indices, Springhill site, Montana. ble 20-2. GPS data sets g

ulating data from a hand-hel

Minimum

Maximum

Slope (percent) 0.4 27.3

(m) No. of points selected | M

Specific catchment area (m* m™) 10,0 886.0 2224

Steady-state wetness index a7t

100 m 2
100 m 4
Partial GPS data sets were chosen in ways that more or less matched those 50 m I

a farm operator or consultant might have collected with a hand-held GP

receiver or a mobile receiver mounted on a vehicle. 80 m :
GPS data sets that a farmer might have collected with a hand-held 50 m 4

receiver were obtained by dividing the field into 25 m, 50 m, and 100 m g =0 16

cells and randomly selecting a pre-determined number of X,Y,Z values in &

grid cell (Table 20-2). This approach is equivalent to a stratified random are gSim -

sample design (Berry & Baker, 1968), although the random element disappeat 25 m 4

fairly quickly as more data are selected and the sample begins to mimic
routes travelled by the pickup truck and mobile GPS receiver (compare
20-2a, 20-2b, 20-2¢, and 20-2d with Fig. 20-1a). This discovery may nol
very important (practical) given that most people would switch from a hand-he
receiver to one mounted on a truck if their goal was to collect > 200 sels @
X,Y,Z data, although some of these data sets were retained for this study
used to demonstrate the impact of pattern on computed topographic attribu

GPS data sets that a farmer might have collected with a truck-mounted
GPS receiver were obtained from selected north-south and west-east truck route
in order to examine the impact of the number and pattern of GPS data or
computed topographic attributes. A total of six data sets were compiled in
way. Three data sets were contructed by choosing every second north-§
and/or west-east truck route and three data sets were constructed by choosin
north-south and/or west-cast truck routes. The turns at the end of the t
routes were omitted from all six data sets, Figure 20-3 shows the patte
GPS data sets and resulting contour maps with 1 m contour intervals. Bet
1.120 and 4,817 X.Y,Z data scts were chosen with these options. _ measures match those }’S?d by

Each of the seventeen irregular X,Y,Z data sets was converted inl existing methods for building tr
regular 10 m grids with ANUDEM. The drainage enforcement option was U gridded digital elevation model
in ANUDEM to maintain fidelity with the stream network that was identifi
the software itself. The resulting regular grids were transferred to TAPES-G!
compute topographic attributes and to ARC/INFO to perform the statisti
analysis and create the 1 m contour maps reproduced in Fig. 20-1 through 20
The TAPES-G attributes were also transferred to the GRID module i
ARC/INFO where most of the statistical analysis was performed. '

The elevation, slope gradient, specific catchment arca, and steady-
wetness index surfaces (grids) were compared with equivalent surfaces develop
from all the GPS data to evaluate the impact of the number and pattern of €
data on computed topographic attributes. The contour maps in Figs. 20=
20-2, and 20-3 allow visual comparisons and the statistics in Tables 20-3

20-4 provide additional details.
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GPS data sets generated with stratified random arcal sample
from a hand-held GPS receiver.

f points selected | Max. desired no. of points No. of points actually selected

1 32 29

2 64 58

4 128 16

1 120 111

E 240 221
g 4 480 441
-_ 16 1920 1747
pri 435 391
4 1740 1535

idditional details.

hsolute differences are reported to avoid the offset of positive and
sers. The root mean square error (RMSE) is commonly used to
s differences in values between two or more grids in GIS packages,
n Index is used to measure how clustered or how randomly the
‘topographic attributes distribute spatially. Large mean absolute
id RMSE values indicate large discrepancies between the sample
grid constructed with all 6,284 GPS data points, whereas Moran
near zero indicate that the differences were randomly distibuted and
iching +1 indicate positive spatial autocorrelation (i.e., that the
e clustered). This approach relies on an implicit but important

at the closer the sample surface is to the equivalent surface

the full GPS data set, the better the performance of the sample
|is being assessed. This assumption and the resultant statistical

h those used by Lee (1991) in his pioneering work comparing
10ds for building triangular irregular network models of terrain from
al elevation models.

RESULTS

e 20-1b shows the contour map that was produced with ANUDEM,
and all 6,284 GPS data points. Three topographic features are
is map and the accompanying three-dimensional wire mesh diagram
: (i) the hilltop marking the northern boundary of the study area that
¢ gentle side slopes to the west and south and very steep side slopes
(i) the shallow drainage (valley) that traverses the study area in a
westerly direction in the bottom (southern) half of the study area;
hilltop located in the southeast quadrant whose northern side slopes
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mark the southern margin of the valley identified as (ii). These topographic
features were also observed in the field and they are used along with
statistical analysis of the differences in computed topographic attributes to g
the effectiveness of the different sample data sets,

Figures 20-2 and 20-3 show the GPS points that were actually selectet
and used to compute the topographic attributes as well as the contour maps th
were produced with ANUDEM and ARC/INFO. The GPS points are so close
together that they appear as lines in the left half of the figures. The contou
maps were clipped to minimize edge effects and as a result, they cover a sn
portion of the study area than the GPS maps. The first three pairs of maps ig
Fig. 20-2 demonstrate the effect of selecting additional random points within 100
m grid cells. The first contour map was generated with only 29 GPS points and
does not adequately delineate the western side slopes for the hilltop along the
northern boundary nor the valley that traverses the southern half of the studs
area (Fig. 20-2a). Doubling the number of points selected in each grid cell (Fig
20-2b) and doubling the number again (Fig. 20-2c) improved the delineation
the two hilltops and the valley. The third contour map is much better than the
second map in defining the channel, in part because of the presence of a Spuriou
pit near the southwest corner of the field in the second map (Fig. 20-2b).
contour map in Fig. 20-2d was produced when one X.Y,Z data point was che
randomly from each 50 m cell. Both the total number of points selected (.
versus 128) and the resultant contour map are very similar to the best resul
was achieved with 100 m cells (Fig. 20-2¢). Finally, a comparison of the
two contour maps with the map produced from all 6,284 X,Y,Z data p
indicates how few data were needed to generate a "reasonable" contour
this particular field.

The contour maps produced with the linear samples tell a much differes
story. The first two contour maps reproduced in Fig. 20-3 were derived ror
the gridded DEMs that used every second and all of the north-south route
Both contour maps show the major topographic features, although the secon
map captures much more of the fine-scale detail (Fig. 20-3a and 20-3b). T
two contour maps derived from west-cast sample data do much better in
northern half of the study area than they do in the southern half (compare
20-3c and 20-3d with Fig. 20—1b, and note the presence of spurious pits in
channel on both maps). This result was probably caused by the orientatic
the truck routes relative to the channel and it illustrates the sensitivity of
surfaces produced with the orientation of the linear routes used to collect
data relative to the orientation of major topographic features (i.e., ridge
stream lines). The selection of every second north-south and west-east route
captured 2,483 X,Y.Z data points (40% of the total points) and not surpri
this method produced a very similar contour map to the that produced with tl
full GPS data set (Fig. 20-3e).

Seventeen sets of elevation differences were computed by comparing the
11 grids from the stratified random area samples and the six grids com uted
from the linear samples with the grid generated with all 6,284 sets of
data. The 10 m by 10 m grid measured 63 rows by 24 columns, so that the i
number of points is 1,512. A modest improvement in the fitted surface was ac
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number of points is 1,512, A modest improvement in the fitted surfs
achieved by increasing the number of randomly chosen GPS data points i
100 m grid cells from 1 to 4 (Table 20-3). The reductions in mean a
differences and RMSEs indicate smaller differences whereas the declines in
Moran index indicate slightly less clustering of these errors. These trends
much more pronounced for the 25 m and 50 m data sets in that the values
three indices fell sharply as the number of randomly selected GPS data p
was increased (Table 20-3). Overall, these results indicate that the error
strongly clustered (Moran’s [ > 0.60) for sample sizes < 200 and that the e
are typically smaller and less clustered if a small number of GPS poinls
selected from many cells. }
A comparison of the statistical results reproduced in Tables 20-3;

20— confirms that the lincar paths produced inferior DEMs compared o/t

stratified random areal samples for roughly similar sample sizes. The r
presented in Table 204, for example, show that the mean absolute differel
RMSEs, and Moran’s I values were consistently larger for the every othern
south and every other west-east samples despite the relatively large sizes of!

samples (n = 1363 and 1120, respectively). Overall, these results indicate

the errors were noticeably larger when every second north-south and/or wesl
route was chosen and that these errors exhibited strong positive Sf
autocorrelation (i.e., clustering).

Tables 20-5 through 20-7 show what happened when the elevation d
were used in TAPES-G and WET to calculate slope gradients, specific catc
areas, and steady-state wetness indices. Table 20-5 summarizes the arith
means for the different grids and shows how the relatively small diffe
between the elevation grids (< 0.05%) were compounded when these data

input to TAPES-G and WET and used to calculate the topographic attributes

Table 20-3. Spatial analysis of elevation differences from stratified random ae

sample points.

Mean absolute
Grid size No. points selected elev. diff. (m}) RMSE (m)

100/1 29 1.39 1.71

100/2 58 1.04 1.43

10074 0.78 1.16

5001 0.60 0.95

5002 0.43 0.73

50/4 4 0.31 0.60

50016 0.16 0.40

25/1 0.27 0.54

25/4 0.16 0.40
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the number of randomly chosen GPS data points in the 100 m grid
lIs from 1 to 4 (Table 20-3). The reductions in mean absolute
2d RMSEs indicate smaller differences whereas the declines in the
indicalc slightly less clustering of these errors. These trends are
onounced for the 25 m and 50 m data sets in that the values of all
_ el sharply as the number of randomly selected GPS data points
L‘{Tab]e 20-3). Overall, these results indicate that the errors are
d (Moran’s 1 > 0.60) for sample sizes < 200 and that ““.: errors

smaller and less clustered if a small number of GPS points are
'many cells. o

Wparison of the statistical results reproduced in Tables 20-3 and
a6 that the linear paths produced inferior DEMs compared to the
fom arcal samples for roughly similar sample sizes. Th_r; results
Table 204, for example, show that the mean absolute differences,
?Moran’s I values were consistently larger for the every other north-
arv other west-east samples despite the relatively large sizes of these
21363 and 1120, respectively). Overall, these results indicate that
noticeably larger when every second north-south ;mdfl’o'r wcsl—c;_isl
’;\‘llosen and that these errors exhibited strong positive spatial
on (i.c., clustering). ‘

s 20-5 through 20-7 show what happened when the elevation data
TAPES-G and WET to calculate slope gradients, specific cullchmm.u
eady-state wetness indices. Table 20-5 summarizes the E‘lljlﬂlhl‘l]cllc
different grids and shows how the relatively small differences
elevation grids (< 0.05%) were compounded when lh.c.\;c dzftu were
PES-G and WET and used to calculate the topographic attributes.

‘Spatial analysis of elevation differences from stratified random area

s

ints.

RMSE (m) Mor

1.43

1.16

0.95

0.73

0.60

0.40

0.54

0.40

Mean absolute
No. points selected elev. diff, (m) RMSE (m) Moran's Index
29 1.39 1.71 .89
58 1.04 1.43 0.86
116 (.78 1.16 0.81
111 (.60 0.95 0.74
221 0.43 0.73 (158
441 0.31 .60 0.46
1747 016 0.40 0.19
3 391 027 0.54 039
1535 (.16 (.40 0.19




Fig. 20-3. GPS data sets and 1 m contour maps produced with every

north-south truck route (a), every north-south route (b), every second
route (c), every west-east route (d), and every second north-south a
east truck route (e).
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Table 20-6. Spatial analysis of topographic attribute differences from strati

20-7. Spatial analysis
random samples.

samples.

Sample Slope gradicnt Specific catchment arca Weltness index Slope gradient

RMSE Moran | MAD | RMSE Maoran MAD RMSE MAD RMSE | Moran

100/1 4.14 0.78 3336 | 13815 0.05 1.30 1.51

2.69 3.79 0.76
100/2 .76 2943 1262.2 0.05 1.13

1.67 231 047
100/4 072 299.5 1399.8 0.07
5041 0.65 22712 1041.9 0.01 2.48 3.8 0.68

50/2 0.57 1109.7 -0.09

1.79 2.27 0.45

5004 0.53 738.6 -0.11

201 278 57
50116 036 747.1 0.01 % _| 0ol
25/1 049 9093 | -0.12 1.62 197 | 032
25/4 035 6049 | 007
(

the errors for the primary and secondary topographic attributes varied with
different stratified random area samples. The magnitude and clustering o
slope gradient errors decreased gradually as the cells decreased in size (ie.
spread improved) and sample size was increased. The mean slope gradien
the sample grids ranged from 75% to 117% of the mean slope gradient
degrees) on the grid computed with the entire X,Y,Z GPS data set (Table 20
The specific catchment area means for the sample grids are all larger than tha
the complete GPS data set and confirm that the sample elevation grids
some of the fine-scale topographic variation (Table 20-5). The mean absolute
differences (MADs) and RMSEs reported in Table 20-6 confirm this trend
indicate that there were substantial reductions in the magnitude of these erro
the number and spread of the sample data was increased. The spatial patte
these errors was more or less random for all of the samples (as would be ex
for a variable that accumulates flow from upslope cells). The relative magni
and clustering of the steady-state wetness index errors expressed as percen
fell between those of the two primary attributes from which this compound i
is calculated. The magnitude and level of clustering of the wetness index el
decreased as sample size and spread increased (Table 20-6).

Similar results were obtained with the linear samples, so that: (i) th
magnitude and clustering of errors decreased as the number of truck routes
increased for slope gradient and the steady-state wetness index, and (ii)
magnitude of the errors decreased for specific catchment area although these errof
were randomly distributed (Table 20-7). :

GPS technology is increa
od for collecting the irregt
LS to construct digital elevat
n attributes. The grid surfa
‘were compared with the sur
- GPS-derived X,Y,Z points
ically as elevation conto
tion, slope gradient, specific
used to summarize the per
- These statistical comparis
it data will influence the DE
cular, they show that: (i)
1bution of these errors dimin:
lustering of the errors dimi
(iii) that seemingly small
ences in the computed prin
bservation has important i
ly-variable attributes to pr
Moore et al., 1993a, 1993
point source pollution and otl
il., 1991). Researchers, fa
nology in order to build DEN
se differences and should o
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0.11 0.54 )
0.01 0.39

-0.12 0.55 1._
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atial analysis of topographic attribute differences from linear

gradient Specific catchment area Wetness index
"RMSE | Moran | MAD | RMSE | Moran MAD RMSE Moran
379 0.76 3475 | 14438 014 0.99 1.42 0.58
231 0.47 1634 | 9410 -0.03 0.49 (.84 .23
3.28 0.68 259.8 | 1248.1 (.08 0.73 .17 0.41
2.27 0.45 143.8 891.2 0.10 0.44 0.77 (.22
2.78 0.57 2427 | 12280 0n.1s 0.61 1.08 0.34
1.97 0.32 102.1 7493 0.10 0.32 0.63 0,13

CONCLUSIONS

mology is increasingly advocated as a cost-effective and accurate
ecting the irregularly-spaced elevation data that are required as
et digital elevation models and compute primary and secondary
. The grid surfaces generated from the 17 different sample data
ed with the surface developed with a DEM computed from all
yed X,Y,Z points in this study. Some of the results were shown
slevation contours and spatial analyses of the differences in
‘oradient, specific catchment area, and steady-state wetness index
nmarize the performance of the different samples.
tistical comparisons show that the number and pattern of the GPS
influence the DEM and terrain attributes that are computed. In
‘show that: (i) the magnitude and clustering of the spatial
fese errors diminishes as sample size increases, (ii) the magnitude
of the errors diminishes as the spread of the input data increases,
eemingly small variations in elevation may result in large
computed primary and secondary topographic attributes. This
 has important implications for those who want to used these
s attributes to predict other environmental variables (e.g., Dikau,
pal,, 1993a, 1993b) and those who want (o use them as inputs to
g pollution and other kinds of environmental models (e.g., Panuska
Researchers, farmers, and consultants wanting to use GPS
r to build DEMs and perform terrain analysis should be aware
and should organize their data collection efforts accordingly.
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