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Abstract Given a set S of sites and a set O of weighted objects, an optimal location query finds
the location(s) where introducing a new site maximizes the total weight of the objects that are
closer to the new site than to any other site. With such a query, for instance, a franchise corporation
(e.g., McDonald’s) can find a location to open a new store such that the number of potential store
customers (i.e., people living close to the store) is maximized. Optimal location queries are
computationally complex to compute and require efficient solutions that scale with large datasets.
Previously, two specific approaches have been proposed for efficient computation of optimal
location queries. However, they both assume p-norm distance (namely, L; and L,/Euclidean);
hence, they are not applicable where sites and objects are located on spatial networks. In this
article, we focus on optimal network location (ONL) queries, i.e., optimal location queries in
which objects and sites reside on a spatial network. We introduce two complementary approaches,
namely EONL (short for Expansion-based ONL) and BONL (short for Bound-based ONL), which
enable efficient computation of ONL queries with datasets of uniform and skewed distributions,
respectively. Moreover, with an extensive experimental study we verify and compare the
efficiency of our proposed approaches with real world datasets, and we demonstrate the impor-
tance of considering network distance (rather than p-norm distance) with ONL queries.
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1 Introduction

Optimal location queries have been widely used in spatial decision support systems and
marketing in recent years. For instance, a city planner might want to know: “What is the
optimal location to open a new public library?” The optimal location is the site that would
maximize the number of patrons for whom this is the closest library. An optimal location
query is formally defined as follows: Given a set S of sites and a set O of weighted objects
the optimal location query computes a location where introducing a new site would
maximize the total weight of objects that are closer to the new site than to any other site.

Optimal location queries are computationally complex to answer. The existing work
considers L; distance metrics or L,/Euclidean as the measure of distance between objects
and sites and proposes efficient solutions in these p-norm metric spaces [5, 14]. However,
with many real world applications objects and sites are located on a spatial network (e.g.,
roads, railways, and rivers), and therefore, the approaches that assume p-norm distance do
not apply. We show this by an example as follows. Figure 1a (Fig. 1b) compares the result of
a simple optimal location query assuming L, (L,) distance between objects and sites vs. the
result of the same query assuming the actual distance on the spatial network (i.e., the
network distance). With this sample query, a set S of two sites S; and S», and a set O of
three objects O;, O,, and O3 with equal weights are located on a road network (shown by
thick lines). Figure 1.a depicts the approach proposed for optimal location query computa-
tion in L, space [14], where the intersection of multiple circles represents the identified
optimal region R;. As shown, the optimal region R; and the actual optimal network location,
i.e., the network segment n;n,, are completely disjoint. Similarly, Fig. 1.b illustrates the
optimal location query approach proposed for L, space [2]. The hatched area (comprising
the rectangular areas R, and Rj) is the optimal region in L; space, which significantly
overestimates the actual optimal location n;n,. We further verify the importance of assuming
network distance with ONL queries in Section 7 via experiments, and we show that in 75 %
of the cases the results of optimal location queries in L; and L, spaces are totally disjoint
from the actual optimal network location, with less than 20 % overlapping in the remainder
of the cases.

/

Fig. 1 Optimal location query a L, space result vs. network space result, b L; space result vs. network space result
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In this article, we introduce two complementary approaches for efficient computation of
ONL queries, namely EONL (short for Expansion-based ONL) and BONL (short for Bound-
based ONL), which enable efficient computation of ONL queries for object-datasets with
uniform and skewed distributions, respectively. We argue that the dominating computational
complexity with ONL queries is twofold (this also applies to regular optimal location
queries). To answer any ONL query, first one has to compute a spatial neighborhood around
each (and every) object o of the given object-dataset such that if s is the nearest site to object
0, any new site s’ introduced within the neighborhood of o will be closer to o as compared to
the distance between s and o. Second, one must compute the overlap among object neighbor-
hoods to identify the optimal network location, which is a network segment (or a set of
segments) where the neighborhoods of a subset of objects with the maximum total weight
overlap.

Accordingly, with our two proposed algorithms, EONL and BONL, we focus on reducing
the computational complexity of the latter and the former steps in ONL queries, respectively.
In particular, with Expansion-based ONL (EONL) we simply compute the neighborhood of
an object by expanding the network around the object until we reach the nearest site s to the
object. This is a costly computation at the first step of ONL query answering. However, we
identify and record the potential overlaps between the neighborhoods of the objects during
network expansion to avoid redundant computation at the second step; thus, ensuring
efficient computation of overlaps among object neighborhoods at the second step. On the
other hand, with Bound-based ONL (BONL), at the first step we avoid the costly network
expansion and instead approximate object neighborhoods by an upper bound. In particular,
we introduce two bound estimation techniques, which correspondingly result in two varia-
tions of BONL. Subsequently, at the second step we compute the overlap among the actual
object neighborhoods by network expansion, only if object bounds overlap.

Our experimental results with real datasets show that given uniformly distributed object-
datasets (i.e., datasets with uniform spatial distributions), EONL is an order of magnitude
faster than BONL, whereas with object-datasets with skewed distributions BONL outper-
forms EONL. We attribute the difference in efficiency of the two approaches with the two
types of datasets to the fact that with skewed/clustered datasets, there is less overlap between
neighborhood bounds of the objects; hence, less need for expansion at the second step. In the
real-world, skewed and uniform distributions of the object-datasets correspond to, for
example, the typical distributions of people/customers in urban and rural areas, respectively.
Therefore, EONL and BONL have their own exclusive use-cases in real-world applications
and are complementary.

The key contributions of this article can be summarized as follows:

1. We define and formalize the optimal network location query problem.

2. We introduce two complementary approaches for efficient computation of optimal
network location queries.

3. We experimentally compare our proposed approaches and discuss their use-cases with
different real-world applications.

The remainder of this paper is organized as follows. Section 2 reviews the related work
and Section 3 formally defines optimal network location queries for spatial network data-
bases. Sections 4 and 5 introduce our proposed expansion- and bound-based solutions for
optimal network location queries, respectively. In Section 6, we present the complexity
analysis of our proposed approaches. In Section 7, we evaluate our proposed solutions via
experiments with real world data. Section 8 concludes the paper and discusses directions for
future research.
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2 Related work

Optimal location queries have been studied by researchers in operations research (OR) and
database systems. In OR, most optimal location problems (also called facility location
problems) are formulated as covering problems. These involve locating » sites to cover all
or most of the (so-called) demand objects assuming a fixed service distance for sites.
Covering problems are generally classified into two main classes. The first is the Location
Set Covering Problems (LCSPs) [13] that seek to position a minimum number of sites in such
a way that each and every demand object has at least one site placed within some threshold
distance. The second class is the Maximal Covering Location Problems (MCLPs) [3] which
seek to establish a set of m sites to maximize the total weight of the “covered” objects, where
an object is considered covered if it is located within a specified distance from the closest
facility. Many other problems in this class extend the original MCLP by imposing various
placement restrictions for sites [2, 9], assuming various types of objects (points, lines and
polygons) [10], and considering various definitions for coverage [1].

While OR-based solutions are effective and address various types of optimal location
problems, many of these solutions fail to scale with real world datasets that consist of large
numbers of sites and objects due to their computational complexity. Accordingly, a number
of complementary solutions are proposed by the database community to support scalable
optimal location queries.

One is the Bichromatic Reverse Nearest Neighbor (BRNN) query [8, 12, 17] by which all
objects 0 € O whose nearest neighbor site is s are returned. The optimal location query can
be formulated as a BRNN maximization problem, with which we try to locate a new site s
such that the size of the BRNN set of s is maximized; hence, BRNN and optimal location are
orthogonal problems. Another relevant problem involves finding the top-k most influential
sites [15]. Here, the influence of a site s is defined as the total weight of the objects in a
BRNN set of s. With this problem, a set of existing sites are assumed among which we want
to find the most influential sites, whereas with the optimal location problem, the goal is to
locate a new site with maximum influence.

Wong et al. [14] and Du et al. [5] tackled the optimal location problem by forming a
spatial bound around each object o such that it includes a location / if and only if o is closer
to / than to any other site. The intersection areas where these bounds overlap are the best
candidate locations to introduce a new site. Therefore, to compute the optimal location query
one can start with the areas with the maximum number of overlapping bounds and avoid
other areas to reduce the search space and improve the query efficiency. While efficient, both
of the aforementioned approaches assume p-norm space (namely, [14] assumes L, and [5]
assumes L;), which as shown in Fig. 1 cannot support optimal location queries on spatial
networks. Our proposed solutions utilized network distance to address optimal network
location queries.

More recently, Xiao et al. [16] proposed a unified framework that addresses three variants
of optimal location queries in road networks efficiently. One of these variants called
Competitive Location Queries is the same problem we have defined as ONL queries in this
article. To address this problem, they divide the edges of the networks into small intervals
and find the optimal location on each interval. To avoid the exhaustive search on all edges, in
their optimized method called FGP-OTF, they first partition the road network graph to sub-
graphs and process them in descending order of their likelihood of containing the optimal
locations. Their extensive experiments show the high performance of the FGP-OTF ap-
proach in terms of running time and memory consumption. However, our experiment in
Section 7 shows that the FGP-OTF approach does not perform efficiently with a large road
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network dataset and a set of object points with a nearly uniform weight distribution. Our
experimental results illustrate that a single approach for ONL queries might not perform
efficiently for different distributions of object and site points (e.g., uniform vs. skewed
distributions).

Finally, the EONL approach was originally introduced in our prior work [6] which is
performing efficiently with uniform distributions of object datasets. This article extends this
prior work by introducing a complementary approach for efficient computation of optimal
network location queries in datasets with skewed distributions.

3 Problem formalization

In this section, we formalize the problem of optimal network location as a Maximum
Overlap Segment (MaxOSN) problem. Assume we have a set S of sites (e.g., public schools,
libraries, restaurants) in a 2D environment. Also we have a set O of objects with a weight
w(o) for each object o. For instance, object o might be a residential building/property where
w(o) represents the number of people living in this building. A MaxOSN query returns a
subset of the spatial network (i.e., a segment or collection of segments) where introducing a
new site would maximize the total weight of the objects that are closer to the new site than to
any other site. We assume both sites and objects are located on a spatial network, e.g., a road
network. We model the road network as a graph G (N, E), where N is the set of
intersections/nodes and E is the set of edges of the road network. Each edge e(a,b) has a
travel cost. In this paper, we assume the cost of each edge e is proportional to the distance
between the two end points @ and b of e. Accordingly, the network distance dN(a,b) between
any two nodes @ and b, is the travel cost of the path with least cost from a to b. Figure 2
shows a road network with 14 nodes and weighted edges, four objects 0, 05, 03, and o, with
weights 3, 6, 5, and 4, respectively, and three sites s;, 55, and s3.

Below, we first define our terminology. Thereafter, we describe the MaxOSN query
problem.

Objects @
Sites @&
1 04(4) Nodes o

Fig. 2 Road network model
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Definition 1 (Local network) Given an object o, the local network LN(o) of o, is a sub-
network expanded at object o that contains all points on the road network with a network
distance less than or equal to the network distance between o and its nearest site s; i.e.:

LN(0) ={qlq € e,dN(0,q) < dN(o,s)}

where e € E and s = argminpesdN (o, p) . In Fig. 3, site s, is the nearest site to the object
o; where dN(0;,s;)=5. LN(0,) is identified by expansion, i.e., starting from o; we traverse all
possible paths up to the network distance equal to 5, and we delimit LN(0;) by marking the
ending points, namely markers (shown as arrows in Fig. 3). We term this delimitation
process edge marking. The expanded network consists of a set of local edges connecting the
associated object to all marked ending points. It is important to note that local edges can
fully or partially cover an actual edge of the road network. For example, the local edges of
LN(o0,) are o;n,, o;n;, o;ny and o n (shown as bold lines in Fig. 3). Each local edge e is also
assigned an influence value, denoted by I(e), which is equal to the weight of the corre-
sponding object. For instance, all local edges in LN(0;) have an influence value equal to 3
(i.e., the weight of object 0;).

Definition 2 (Overlapping local networks) A local network LN(o,) overlaps a local network
LN(0,) if LN (07) N LN (0,)#9. In such case, there exists at least one local edge e; in
LN(o,) which intersects a local edge e, in LN(0,).

For instance, in Fig. 3 LN(o;) overlaps with LN(0,) since the local edge o;n, in LN(0o;)
overlaps with the local edge o,n3 in LN(0,).

Definition 3 (Overlap segment) Given two overlapping local networks LN(0;) and LN(0,),
an overlap segment s is a network segment where two overlapping local edges e; and e,
from the two local networks intersect; i.e.:

s={qlgce,qee}

Fig. 3 Local networks
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where e; € LN (01) and e; € LN (0,) and LN (01) N LN (0,)#9. Accordingly, the influence
value of segment s, I,is defined as I, = I(e;) + I(e2).

For example, in Fig. 3 the overlap segment jn, is identified by overlapping the local edges
on; and o,n;z. Also, its influence value is equal to 9. The definition of the overlap segment
can be generalized for more than two local edges: Given multiple local networks and
multiple markers on each edge, the overlap segment on the edge can be identified by
considering the direction and length of the overlapping local edges (in Section 4, we will
discuss this process, called edge collapsing, in detail). For instance, Fig. 4 shows the overlap
segment jk identified by overlapping local edges ak and bj.

Definition 4 (Maximum Overlap Segment Query (MaxOSN)) Given a set O of objects and a
set S of sites, the MaxOSN query returns the optimal network location p, the set of overlap
segment(s) with maximum influence value (Iy):

p = {s|s € 0S,s = argmaxscosls }

where OS is the set of overlap segments.
For instance, in the road network illustrated in Fig. 3 the MaxOSN query returns the set of
overlap segments {o3ng, o3ns}, where each segment has an optimal influence value 7, =11.

4 Expansion-Based Optimal Network Location (EONL)

As we mentioned in Section 1, answering an ONL query is a two-phase process. At the first
phase, one needs to build the local networks of all objects, whereas at the second phase local
networks of the objects are overlaid in order to identify the overlap segment(s) with the
maximum influence value (i.e., the optimal location/segment). With EONL, we focus on
reducing the computational complexity of the second phase.

In particular, at the first phase EONL simply uses network expansion to build the local
networks. At the second phase, assuming we have n objects (and therefore, n local net-
works), one should compute the overlap between 2" combinations of local networks. In this
case, if (for example) one of the network range-query processing techniques proposed by
Papadias et al. [11] is used for overlap computation, the total computational complexity
would be in the order of O (2I°! (IN] log [N|+|E|)). Obviously, this approach is not scalable.
Instead, with EONL we identify the potential optimal segments while expanding local
networks at the first phase, and leverage this information at the second phase to efficiently
compute the segment(s) with maximum influence. To be specific, while expanding the local
networks at the first phase, for each edge we record all ending points (i.e., the points that
mark the border of the local networks of the objects) that lie over the edge. Subsequently, at
the second phase we use the information recorded at the first phase to compute a score for
each edge, which is equal to the total weight of the objects whose local networks cover fully
or partially that edge. The higher score for an edge the more likely it is to contain the optimal

i i k
o —>{ == o Ja o

a b

Fig. 4 Overlap segment of multiple local networks
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segment. Next, through a refinement process we sort the edges based on their scores in
descending order, and starting from the edge with the highest score, we use a technique,
termed edge collapsing, to compute the actual overlap segment(s) on each edge. It is
important to note that through this refinement process we only have to compute the actual
overlap segment(s) for an edge if the score of the edge is more than the influence value of the
actual segments computed so far. With our experiments, we observe that EONL only
computes the actual overlap segments for a limited subset of the network edges before it
identifies the optimal location/segment; hence, it provides effective pruning of the search
space for better efficiency.
Below, we explain how we implement EONL in six steps (Algorithm 1):

Step 1 (Expanding Local Networks and Marking the Edges) (Lines 1-3): For each object
point o, we first compute the local network of the object o, termed LN (o). We compute
LN (o) by expanding the network (using the Dijkstra algorithm [4]) starting from o until
we reach the site nearest to object 0. Next, we mark the ending points/markers of the
local networks on the edges and store the location of the markers.

Step 2 (Constructing the Marked Edge Table) (Line 4): Once markers are generated, we
construct a Marked Edge Table (MET). Table 1 shows a sample subset of the marked
edges in Fig. 3. Each row of the Marked Edge Table (MET) is an entry in the form of (e,
M, Sc(e)), where M is the set of markers marked on the edge e (including the starting
and ending node of the edge e), and Sc(e) is the score of e which is equal to the total
weight of the objects whose local networks cover e (fully or partially). The MET helps
us to identify the overlapping segments with the maximum influence value using the

edge collapsing technique described in step 5.

Step 3 (Sorting the MET) (Line 5): Next, we sort all entries in the MET in descending order of
Sc(e).

Step 4 (Initializing the Optimal Result Set) (Line 6): The EONL algorithm will eventually
return the set of optimal overlap segments (Sy) with the optimal influence value 7,. At

this step, we initialize these two sets to empty sets.
Step 5 (Identifying the Overlap Segments using the Edge Collapsing Technique) (Lines 7-11):

At this step, we use the set of marked edges in the MET to identify the optimal overlap
segments using our edge collapsing technique as follows. First, we split the edge e to a set
of segments, SG(e), where each segment is a part of the edge e between two consecutive
markers. Then, for each segment s of SG(e), we determine the local networks that cover s.
Accordingly, we compute the influence value for s as the sum of weights for the corre-
sponding local networks. For each edge of the MET, the optimal overlap segment (0s), is the
segment which has the highest influence value among all segments in SG(e). It is important
to note that edge collapsing may produce more than one optimal overlap segment on each
edge. As an example, consider the second marked edge of MET shown in Table 1. Since
there are three markers on this edge e, we have SG(e)= {kn;_ny}. The first segment, kn;, is
only covered by local network LN(o0;). However, the second segment, 73/, is covered by two
local networks LN(o;) and LN(0,) which results in a higher influence value compared to

Table 1 Marked Edge Table

(MET) € M Sc(e)
kp ik, ny, p}
kj {k, ns, j}
hg {h, ng, g} 11
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segment kn ;. Therefore, the actual overlap segment of the edge &p is the segment n;/ with an
influence value equal to 9.

Table 2 represents four possible cases by which two local edges e; and e,
might overlap each other. The dashed lines represent local edges e; and e,, the
solid line represents the actual edge ab of the road network, and m; and m, are
two markers. The third column summarizes how the edge collapsing technique
computes the overlap segment (0s) with the maximum influence value (/) in
each case.

It is important to note that we could apply the edge collapsing technique to
all marked edges; however, we do not need to apply this approach for some
marked edges if there is another marked edge whose score is a smaller value
than /). Thus, we can prune any marked edge with Sc (e)<I, . For other edges,
we update I, to the influence value of the actual overlap segment ().

Step 6 (Finding the Maximum Influence Value) (Lines 12—13): When the algorithm
terminates, S, returns the set of optimal overlap segment(s) with the optimal influence
value /.

Algorithm 1 represents our implementation of the EONL algorithm:

Algorithm 1 EONL Algorithm

: For each 0 € O

: Expand the local network of object o

: Mark ending points/markers on edges
: Construct Marked Edge Table (MET)
: Sort MET table based on Sc(e)

: Initialize S, and 1, to &

: For each marked edge e of MET table
L If Se(e)>1,

9: Apply edge collapsing to edge e

0 N N AW N —

10: Retrieve /; and optimal overlap segment(s)
11: Update 1,=1,
12: Update S, to the set of overlap segments with maximum influence value /g

13: Return optimal solution set S, and 7,

Here, we illustrate application of the EONL algorithm using the example depicted
in Fig. 2. Assume we have performed the local network expansion for four objects o;,
.., o4 and all ending points are marked on edges as shown using arrows in Fig. 3
(Recall that the starting and ending nodes of the edges are considered as markers
which are not illustrated using arrows in Fig. 3). We construct the MET and sort its
entries based on their Sc(e) values. The first edge in MET is hg. By applying the
edge collapsing technique to kg we retrieve the optimal overlap segment {ozng} with
an influence value /; equal to 11. Then, we update /, to 11. Thereafter, we perform
the iterative steps on the remainder of the marked edges. Among 14 marked edges
from the road network shown in Fig. 2, only the marked edge ik satisfies the
condition Sc(e)>I,. Therefore, the remainder of the marked edges can be pruned.
By applying edge collapsing on ik, the overlap segment o;ns is derived which leaves
I, unchanged. At this point the algorithm terminates since all marked edges have been
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Table 2 Edge collapsing technique

Case Overlapping Local Edges Overlap Segment
e os=am,
1 — - .
a mt om2 b 1,=1(e;) + I(ey)
——————————————————— os=ab
2 . T T T
2 b L= 1(e;) +1(ez)

If (I(e;) > 1(e2) )

os=am;l;=I(e;)

3 9@
a mt m2 b Else
os=bmy; /= l(e;)
————————— 08 =m,m,;
4 —_— e — —

a m2 m b I;=1(e;) + 1(e;)

processed. Therefore, the optimal network queries on the dataset shown in Fig. 3
returns overlap segments {osns, ozng} with an optimal influence value of 11.

5 Bound-Based Optimal Network Location (BONL)

Similar to EONL, our bound-based optimal network location (BONL), is implemented as a
two-phase process. However, with BONL we avoid the computational complexity of
network expansion at the first phase by approximating the local networks with their
corresponding spatial bounds. In particular, we define a (circular) spatial bound around each
object o such that it is guaranteed to contain the local network of the object. For example,
given an object point o and its nearest site s in the spatial network, one can use the Euclidean
Restriction property [11] to define such a circular bound with radius equal to or greater than
dN(o,s), which guarantees containment of the local network of o. Figure 5 shows the local
bounds of four objects 0,, 02, 03, and 0, as well as their corresponding local networks. The
weight of local bound /b for an object, denoted by w(lb), is defined to be equal to the weight
of the corresponding object.

In order to form the local bound for an object using the Euclidean Restriction property,
BONL must compute the exact or approximate distance between the object and its corre-
sponding nearest site in the spatial network. Toward that end, we propose two variations of
BONL. With BONL-U (i.e., BONL with upper bound), we approximate the local bound of
an object by an upper bound which is derived using two different landmark selection
techniques. On the other hand, with BONL-M (i.e., BONL with minimum bound), we
introduce an efficient approach to compute the exact distance between an object and its
nearest site. While BONL-M always provides a more accurate approximation of the local
networks, with our study we also considered BONL-U as an option with potentially more
efficient bound computation. We explain our bound computation approaches with BONL-U
and BONL-M in Sections 5.1 and 5.2, respectively.
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Fig. 5 Local bounds

Here, assuming that local bounds (either upper bound with BONL-U or exact/minimum
bound with BONL-M) are computed at the first phase of BONL, we explain the second
phase of performing ONL queries with BONL. At the second phase, we need to overlap the
computed spatial bounds and prioritize the investigation of those overlapping areas that have
a higher potential of covering the optimal segments (similar to the concept of the MET and
edge collapsing technique with EONL). It is important to mention that overlapping spatial
bounds help us predict those areas that might cover the optimal segments. However, to
identify the exact optimal overlap segments we need to expand the local networks of spatial
bounds and retrieve the optimal overlap segments using our edge collapsing technique.
Below we explain our implementation of BONL in more detail.

With BONL, once local bounds of the objects are identified, for each local bound /b we
find a list of other local bounds that overlap with /b and we call this the overlapping list
OL(1b) of Ib. Lemma 1 defines the condition to identify overlapping bounds:

LEMMA 1 Local bound b, with radius r; overlaps local bound b, with radius r, if and only
if | ry|+]| rp|>|070,| where 0; and o, are centers of the circular bounds 1b; and Ib,, respectively.

PROOF. Proof is obvious.
Once the overlapping list for each local bound is generated, we construct a Pair-wise
Overlapping Table (POT), where each row is an entry in the form (Ib, OL(Ib)). We call OL

Table 3 Pair-wise Overlapping

Table (POT) Lb OL(lb)
Ib, Ib,, Ibs, Iby
Ibs Iby, b,
Ib, Iby, Tbs
Tb, Ib,
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(Ib) simply OL. The entries of the POT are sorted in descending order of w(OL), where

W(OL)= 3" cor w(lb) (Recall w(lb) is the weight of local bound /b). Table 3 shows the POT constructed for
the example depicted in Fig. 5.

Finally, starting from the first entry, BONL processes each entry of POT to find the
optimal segments as follows:

Step 1 (Expanding Local Networks and Marking the Edges):For each entry (/b,OL) in the
POT, we pick the OL list and expand the corresponding local networks as well as the
local network of /b using the Dijkstra algorithm, while marking all end points on
each edge of the network.

Step 2 (Identifying the Overlap Segments): For each entry, we identify the overlap segments
for the overlapping local networks derived from the previous step using the edge
collapsing technique described in Section 3.

Step 3 (Finding the Maximum Influence Value): Among all identified overlap segments, we

pick the one with the maximum /, value as the optimal solution.
It is important to note that we do not need to expand the local networks of some
entries if there is another entry in the POT whose actual influence value has a greater
value. This means we can prune some entries from the POT where w(OL)+w(lb)<I,
and /, is the current optimal influence in the current iteration.

5.1 Bound-Based Optimal Location with Upper Bound (BONL-U)

With BONL-U, the upper bound value of the network distances between each object point
and its nearest site is computed based on a set of landmarks (a landmark can be any point on
the road network). This approach is inspired by the ALT algorithm of Goldberg and
Harrelson [7]. However, the lower bound of the shortest path distances in ALT is computed
based on an A* search, landmarks and triangle inequality. Our upper bound value compu-
tation approach entails carefully choosing a small (constant) number of landmarks, then
computing shortest path distances between all nodes of the spatial network and from/to each
of these landmarks using the Dijkstra algorithm [4]. Then, upper bounds are computed in
constant time using these distances.

Calculating “From” and “To” Distances: Since each edge of our experimental road network
Los Angeles (LA) County road network is directional, we calculate the shortest path
distances between all nodes of the road graph both “From” and “To” all Landmarks
points using the Dijkstra algorithm (Fig. 6).

Calculating Upper

Bound Value: Figure 7 illustrates how we compute the upper bound value of the network
distance dN(o,s), UdN(o,s). The UdN(o,s) is calculated from the network distance o

X

Fig. 6 Distance from and to landmarks

D fram, L(n)

D to, L(n)
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and landmark L, dN(o,L), and the network distance dN(L,s) as UdN(o,s)=dN(o,L)+
dN(L,s)=dN(o,s).

For calculating the upper bound value of object point o and its nearest site
s, we first calculate the shortest path distance value between object o and all
site points traversing all possible landmark points. Then, from all computed
upper bound values, we pick the one with the minimum value as the
UdN(o,s).

Landmark Selection: Finding good landmarks is critical for the overall performance of
upper bound value computation. The optimal approach is the one which contributes
to the computation of an upper bound value very close to the actual value of the
network distance. In the following we discuss two alternate techniques used for
landmark selection: uniform and weighted grid-based landmark selection. In both
techniques we guarantee two landmarks are spatially located farther than a specific
range from each other.

In the uniform landmark selection approach, we randomly select a constant
number of landmarks in a series of grid cells spanning the LA County road
network. With the weighted approach, we select more landmarks in regions
with more site points. For this purpose, we count the number of sites which
falls within each cell, denoted by T,. Then, we assign k& * T./|S| landmarks to
this particular grid cell where & is the total number of landmarks, and [S| is
the total number of site points in the entire dataset. The square grid cells
measured 10 km on a side, given that larger cells gave a result similar to the
uniform selection strategy and grid sizes smaller than 10 km generate numer-
ous grid cells with no assigned landmarks. Our experimental results (see
Section 7) show that the uniform landmark selection outperforms the weighted
landmark selection in terms of computation cost.

Our experimental results showed that the BONL-U algorithm has low
performance due to the cost of the upper bound value computation for
network distances using landmark selection. The drawback of using landmark
selection is that the radius of local bounds (UdN(o,s)) is always larger than the
actual one. This fact produces large numbers of overlapping local bounds and
local networks which leads to relatively high computation cost when using the
BONL algorithm.

In the next section, we introduce the Bound-Based Optimal Location with
Minimum Bound (BONL-M) method in which we improve the local bounds
by computing the actual network distance between objects and their nearest
sites.

Fig. 7 Upper bound value calculation
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5.2 Bound-Based Optimal Location with Minimum Bound (BONL-M)

With BONL-M, we compute the actual network distance value between each object point
and its nearest site, dN(o,s), using the following three-step approach:

Step 1 (Reversing the Road Network Graph): We first reverse the road network graph. Let G
(N, E) represent a road network, where N is the set of nodes and E is the set of edges.
We define G' (N, E’) as the reverse graph of the road network G if for each edge
e(a,b)e E, there exists a reverse edge ¢'(b,a) € E'.

Step 2 (Calculating the Network Distance of Each Node to Its Nearest Site): We then
calculate the shortest distance between each node and its nearest site using the
Dijkstra algorithm. Toward this end, we run the Dijkstra algorithm from each
site point s, and traverse all nodes of the graphs. By traversing each node n,
we store a value called g,, which represents the shortest path distance value
between site s and node n. Each time we pick a new site s’, we check the g,
value while traversing the nodes and if the current g, is greater than the
shortest distance between node # and site s’, we update the g, value and set it
to the shortest distance value between n and s'. After processing all site points,
the g, values stored with the nodes represent the shortest path distances
between the nodes and the nearest sites.

Step 3 (Computing the Network Distance of Each Object to Its Nearest Site): We calculate
the network distance of each object to its nearest site using the g, values computed
with the previous step.

This three-step approach calculates the actual network distance value, dN(o,s) and
these values are used in place of the upper bound values used in BONL-U. Our
experiments demonstrate that the BONL-M approach reduced the radius of the local
bounds and improved the performance of the BONL-M algorithm compared to the
BONL-U approach.

6 Complexity analysis

In this section, we analyze the computational complexity of our proposed approaches.
BONL-U: Below, we discuss the computational complexity of various tasks with BONL-U:

Landmark Selection: The running time of the landmark selection step takes O (&* [N|) (Recall
k is the number of selected landmark points).

Calculating “From” and “To” Distances: Given k landmark points, computing “From” and
“To” distances takes O (k ([N| log [N|+|E|)) and O (IN| ([N| log [N|+|E|)), respectively.
In total, the running time of upper bound value computation would be O (N] (|N] log |
N|+|E|)) which is extremely high in large road networks. To improve the running
time of this step we reverse the road graph (O (|E|)) and calculate the
distances”From” landmarks to nodes. This technique improves the running time to
O (k (IN| log |N|+|E]).

Calculating Upper Bound Value: This step takes O (k |O] |S|) and the total running time for
computing Ud (N,S) is O (k* [N)+0O (k (N| log [N|+|E|))+0 (k |O] |S]).

Forming Local Bounds: This step takes O (1) time.

Constructing the POT:  This step takes O (|OJ?) time since there are |O| local bounds.

Sorting the POT:  Sorting takes O (|O| log |O|) running time.
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Expanding the Local Networks: Since the maximum number of overlapping local bounds
can theoretically be equal to |O], the running time for expanding the local networks
takes O (O] (IN] log [N|)+|E|)). Then, we mark all end points on edges which requires
O (|[E)) time. Note that the edge marking step cannot be performed at the same time as
expanding the Dijkstra algorithm in step 1 because Dijkstra’s algorithm assumes that
the objects and sites fall on network nodes while in our scenario ending points may
fall on edges.

Identifying the Overlap Segments with the Maximum Influence Values: The edge collaps-
ing technique takes O (|E| |O[?) time. Thus, considering |O] entries in the POT, the edge
collapsing step has a total complexity equal to O ([E| |O[).

Finding the Maximum Influence Value: This task takes O (1) time.

The dominant factors in the overall running time of BONL-U are O (k |N| log [N|+k |
E|)+0 (P N| log IN|+[OF* [E])).

BONL-M: The complexity of BONL-M is similar to BONL-U except for the computation
of the actual network distance values which requires the following steps:

Reversing the Road Network Graph: This step can be completed in O (|E|) time.

Calculating the Network Distance of Each Node to Its Nearest Site: The running time of this
step is O (S| (IN| log [N[+[E])).

Computing the Network Distance of Each Object to Its Nearest Site:  This step can
completed in O (|O)).

The dominant factors in the overall running time of BONL-M are O (|S| (N] log [N|+|E|))+O
(IO IN| log [N|+|OF [E]).

EONL: In this case, we reduce the running time of the optimal network location query by
eliminating the cost of the upper bound/minimum upper bound value computation.
The costs of constructing the MET and sorting the table are O (|E|) and O (|E| log |E|)
respectively. The overall running time is O (|E| log [E|)+O (|O| (IN] log [N|+|E|))+O (|
E| |O]*) because edge collapsing is performed only once for each edge. Thus, the
complexity of this technique improves to O (|E| |O|2) in EONL. The dominant factors
in the overall running time of EONL are O (|O] [N| log |[N|+|OJ* |E)).

7 Experimental evaluation

We next describe the setup we used for the experiments and then present and discuss the
results.

7.1 Experimental setup

All experiments were performed on an Intel Core Duo 3GHz, 4 GB of RAM, Dual-
Boot Windows 7/Fedora 16 Linux system. The algorithms are implemented in
Microsoft C# in .NET platform 3.5. The reason we chose a dual-boot system is the
fact that we will later compare our implemented approach with that of Xiao et al.
[16]. Their approach was also programmed in C++ on a Linux machine. We use a
spatial network of [N|=375691 nodes and |[E[=871715 bidirectional edges, representing
the LA County road network. The spatial network covers 130 km * 130 km and is
cleaned to form a connected graph. We use real datasets for objects and sites. Objects
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Table 4 Five real datasets for

sites Datasets Cardinality
Johnny Rockets 28
McDonald’s 328
Hospitals 308
Schools 2621
Fast Food Outlets 19160

are population data derived from LANDSCAN and compiled on a 30"x30"
latitude/longitude grid. The centroid of each grid cell is treated as the location of
each object and the population within each grid cell as the weight of object. For the
objects which are not located on road network edges, we snapped them to the closest
edge of the road network. In total we have |O|=9662 objects. The weights of objects
are distributed nearly uniformly with an average of 1100. For each experiment, we
use a subset of object points selected from this base dataset that we will describe in
each of the experiments. We also deployed five datasets consisting of Johnny Rockets
restaurants, McDonald’s restaurants, hospitals, schools, and all fast food restaurants
(i.e. outlets) in LA County (including McDonald’s and Johnny Rockets) for the sites.
The cardinality of each site dataset is shown in Table 4. All sites, objects, nodes and
edges are stored in memory-resident data structures.

7.2 Experimental results

Below we present the results of the four series of experiments that we ran on the aforemen-
tioned datasets.

Accuracy: We first verified that the optimal location queries in L; and L,/Euclidean space
are not applicable to spatial networks. For this test, we selected four datasets with 20,
40, 60, and 85 object points that were randomly selected from the population data (DS;-
DS,). All four sets of object points were located on the LA county road network. For site

, N—
IR

Fig. 8 Non-overlapping case
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Table 5 Average distance of op-

timal network location and optimal Dataset <N, L;>(meters) <N, L,>(meters)
location derived by L; and L, ap-
proaches. (Size of the entire area is DS, Overlaps (< 20 % coverage)
6.2 km x 9 km) DS, 4998 5305
DS; 4995 2743
DS, 6663 6396
Average 5552 4814

points, we selected a subset of McDonald’s including seven sites (Fig. 8 shows only four
of the site points). We applied the L, [14] and L, [5] distance approaches and identified
the optimal location in each case. Then, we performed the EONL algorithms on each
dataset and retrieved their corresponding optimal network location. The result of this
experiment showed that in 75 % of cases (we call it set A) the optimal locations derived
by the L,/L, approach did not overlap the optimal network location derived by EONL
and when they did overlap, there was<20 % common coverage. Figure 8 shows one of
the non-overlapping cases of set A (the circles represent objects and triangles represents
sites). From cases included in set A, the average distance between the optimal network
location and the optimal location derived from the L; and L, approaches (<N, L;>, <N,
L, >) are similar to the size of the entire area covered by these datasets (see Table 5) and
verifies that using the existing L, and L, approaches for optimal location queries on
spatial network databases is not accurate and likely to return irrelevant results.

We also observed that the maximum influence value returned by the optimal
network location query is 13 % and 12 % higher than those returned by the optimal
location queries in the L, and L, approaches, respectively and would therefore identify
larger numbers of customers for those interested in running these kinds of queries.

Execution Time: In order to evaluate the execution times of our proposed approaches, we
implemented two experiments. With the first one, we considered one site-dataset and
used various object-datasets with different sizes and spatial distributions. With the
second experiment, we chose one object-dataset and used various site-datasets.
Below, we describe each experiment in more detail.

Effect of Object-Dataset: For this experiment, we sub-sampled four subsets of objects from the
base dataset with sizes 366 (C1), 567 (C2), 1049 (C3) and 1533 (C4). We sub-sampled

6 Execution Time (min)
5
O BONL-M

4
3 EONL
2
1 [
== o

C1 Cc2 C3

Object datasets with skewed distribution

Fig. 9 Execution times of the algorithms with a single site dataset and four skewed object datasets
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Fig. 10 Execution times of the algorithms with a single site dataset and four uniformly distributed object datasets

the objects with two different spatial distributions: uniform and skewed. To select each
object, we randomly picked both X and Y dimensions of the grid cell corresponding to
the object using a uniform or skewed distribution. For the fixed site dataset, we picked
the set of Johnny Rockets restaurants which has a small number of site data points
compared to the other site datasets in Table 4. Thereafter, we applied the BONL-M and
EONL approaches to the aforementioned datasets and computed the execution times
(as we show later, BONL-M outperforms BONL-U, hence the latter was excluded from
this experiment). Figure 9 depicts the results of our experiment. We observe that when
the size of the object-dataset is small (C1) and its distribution is skewed, the execution
time of BONL-M is higher than EONL. This is because the cost of computing the
radius of the local bounds (O (|E[)+ O (|S| (N| log [N|+|E])) is comparable to the cost of
expansion of local networks (O (JO| (]N| log |N|+|E|))) when the number of object points
(I0)) is low. However, with the larger object-datasets (C2 to C4), the performance of
BONL-M increasingly improves relative to EONL, because with a skewed object
distribution, the number of overlapping local bounds is significantly reduced.
Therefore, the cost of overlap computation with BONL-M becomes less than the cost
of local network expansion with EONL.

On the other hand, with uniformly distributed object points, the EONL always
outperformed BONL-M (Fig. 10). This is because with a uniform distribution of object
points, the number of overlapping local bounds is always high which results in a higher
cost of identifying overlap segments relative to the cost of local network expansion.

25 Execution Time (min)

SRS
B
R
R

BONL-U BONL-M EONL

B McDonald's M Hospitals ™ Schools B Fast Foods ‘

Fig. 11 Execution times of the algorithms with uniformly distributed objects

@ Springer



Geoinformatica (2014) 18:229-251 247
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Fig. 12 Average size of local bounds

Effect of Site-Dataset: For this experiment, we applied all three algorithms to the four site
datasets of Table 4 and we selected the uniformly distributed population data with
9662 points as the fixed object dataset. Thereafter, we computed the execution times
to compare their performance. Figure 11 shows that EONL has the best performance,
beating BONL-M and BONL-U by factors of 6 and 12 on average, respectively.

The three algorithms behaved similarly with the small McDonald’s, Hospitals, and
Schools datasets. The Hospital sites were more skewed and this variability meant that
the expansion and edge marking took longer in those parts of the graph with few
hospitals (see Fig. 11). Also, although the size of fast food restaurants is large, the
execution time of EONL is low. This is because the complexity of EONL (O (|E| log |
E|)+0 (10| (IN| log [N|+[E|))+O ([E| |O[*)) is independent of the number of site points, |S|.

Magnitude of Local Bounds: The radius of the local bounds was improved 53 % on average
by using BONL-M in place of the BONL-U algorithm. Figure 12 shows how the
radius of local bounds was reduced by using the BONL-M algorithm in place of
BONL-U for each of the aforementioned datasets. Furthermore, we observed that the
Hospitals dataset has the highest average of local bound radii in both algorithms
because the skewed site distribution meant that the expansion of the local network
traverses a longer path until it hits the nearest site.

Landmark Selection: For this experiment, we selected 100 landmarks and applied the BONL-U
algorithm to four datasets. The results in Table 6 show that the weighted approach took
more time for three of the four datasets and especially the McDonald’s and Hospitals
datasets which are sparser. This is because the weighted approach assigned more
landmark points to the areas with more site points; hence, it takes more time for
Dijkstra expansion in the areas with lower site density.

Comparison with FGP-OTF method ([16]: In this experiment, we compare the performance of
optimal location queries introduced in [16] with our proposed approach. From the several
techniques presented in [16], we focused on the FGP-OTF method since it was reported
as the most efficient approach in terms of execution time. We applied the FGP-OTF'
algorithm and EONL algorithm to the four sites datasets of Table 4 and we
selected the uniformly distributed population data with 9662 points as the

! There is a user defined parameter called 6 € (0,1] used in the FGP-OTF algorithm. For this experiment, we
ran the FGP-OTF algorithm with different # values in the range of [0.0001, 1]. The # value equal to 0.001
resulted in less computation cost and the corresponding execution time is reported in Fig. 13.
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Table 6 Comparing the execution time of BONL-U with the two grid-based landmark selection techniques

McDonald’s Hospitals Schools Fast foods
BONL-U Uniform 10 min 21.5 min 10.5 min 22 min
BONL-U Weighted >1h >1h 10.5 min 31 min

fixed object dataset. Thereafter, we identified the optimal location derived by
each approach to compare their accuracy. Both approaches reported the same
set of segments as the optimal location. Then, we computed their execution
times to compare their performance. Figure 13 shows that the EONL approach
outperforms the FGP-OTF approach. Despite the fact that FGP-OTF avoids the
exhaustive search on all edges of the network by partitioning the network into
sub-graphs and pruning the edges of some sub-graphs, it still shows a signif-
icant overhead in computation for these datasets. In this experimental setup, as
we mentioned before, the weights of objects are distributed nearly uniformly.
We observed while running FGP-OTF the upper-bound values of the weight of
the sub-graphs returns relatively similar values in graph partitioning process.
This feature produces fewer numbers of pruned sub-graphs and edges, respec-
tively. As a result, in a large road network like the one used in this experi-
ment (recall |E|=871715 and |N|=375691), the FGP-OTG algorithm resulted in
a high computation cost (it took hours for some datasets) (Fig. 13).

It is important to note that according to [16], FGP-OTF can find the
optimal location in minutes for road networks with sizes of similar order
(e.g. |[E|=223000 and [N|=174955). However, in that case unlike our experi-
mental data set the weight distribution of the objects is skewed (not uniform).
As a result the pruning algorithm of FGP-OTF can effectively filter out a large
number of sub-graphs and their corresponding edges and efficiently identify
the optimal location.

Execution Time (seconds)

10000

8000 = FGP-OTF
EONL

6000

4000

2000 +~

M = >
b"o
00

Fig. 13 Comparing the execution time of the EONL algorithm with the FGP-OTF algorithm [16]
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8 Conclusions and future directions

In this study, we proposed a set of scalable solutions for the problem of optimal
location for objects and sites located on spatial networks. Accordingly, we proposed
EONL and BONL as two complementary approaches for the efficient computation of
optimal network location queries with datasets of different spatial distributions. In
particular, we showed that avoiding network expansion with BONL is more effective
when the given object-dataset has a skewed spatial distribution, whereas EONL out-
performs BONL with uniformly distributed objects. We verified and compared the
performance of our proposed solutions with rigorous complexity analysis as well as
extensive experimental evaluation using real-world data.

We intend to extend this study in two ways. First, with the optimal network location
problem, like all previous work we assumed a site covers an object if and only if the site is
the closest site to the object. We plan to study optimal network location queries under a more
generalized definition of coverage where a site covers an object based on a combination of
mutual relationships (not only proximity), such as when site properties (e.g., hotel amenities)
match the requirements of an object (e.g., the interests of potential travelers). Second, we
want to study a more complex optimal location problem setting where the sets of sites and/or
objects might be located both on and off spatial networks. With this problem, we will
investigate and develop hybrid solutions.

Acknowledgments The authors would like to thank Professor FeiFei Li for making the source code and the
corresponding datasets used in [16] accessible.
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