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A comparison between the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and observations at
735 meteorological stations indicated that mean annual temperature (MAT) was underestimated about 1.8 °C
while mean annual precipitation (MAP) was overestimated about 263 mm in general across the whole of
China. A statistical analysis of China-CMIP5 data demonstrated that MAT exhibits spatial stationarity, while
MAP exhibits spatial non-stationarity. MAT and MAP data from the China-CMIP5 dataset were downscaled by
combining statistical approacheswith amethod for high accuracy surfacemodeling (HASM). A statistical transfer
function (STF) ofMATwas formulated usingminimized residuals output byHASMwith an ordinary least squares
(OLS) linear equation that used latitude and elevation as independent variables, abbreviated as HASM-OLS. The
STF of MAP under a BOX-COX transformation was derived as a combination of minimized residuals output by
HASMwith a geographically weight regression (GWR) using latitude, longitude, elevation and impact coefficient
of aspect as independent variables, abbreviated as HASM-GB. Cross validation, using observational data from the
735 meteorological stations across China for the period 1976 to 2005, indicates that the largest uncertainty oc-
curred on the Tibet plateau with mean absolute errors (MAEs) of MAT and MAP as high as 4.64 °C and
770.51 mm, respectively. The downscaling processes of HASM-OLS and HASM-GB generated MAEs of MAT and
MAP that were 67.16% and 77.43% lower, respectively across the whole of China on average, and 88.48% and
97.09% lower for the Tibet plateau.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

GCMs are an available source for climate scenarios. However, due to
the coarse spatial resolution of GCMs (200–500 km), it is difficult to as-
sess climate change impacts at regional and local levels, although GCMs
can provide a good overview of both current and future climates at a
global level (Xue et al., 2007). Grotch and MacCracken (1991) found
that the range of changes in temperature and precipitation simulated
by different models is much broader at finer spatial scales. von Storch
et al. (1993) observed that simulations of GCMs were questionable on
a regional level. Ciret and Sellers (1998) stated that increasing the spa-
tial resolution of GCMs would improve the simulation of climate and
hence increase confidence in the use of GCM output for impact studies.
Raisanen (2007) concluded that many small-scale processes could not
be simulated explicitly in GCMs. Prudhomme and Davies (2009) indi-
cated that different GCMs often resulted in different climate outputs
is.ac.cn (Z. Fan).
from the same atmospheric and oceanic drivers, especially at regional
scales.

The CMIP5 models may not well simulate different kinds of precipi-
tation over eastern China, while the higher resolution version better
represents the frequency distribution of precipitation (Huang et al.,
2013). The CMIP5 models simulated the seasonal mean and variability
of summer rainfall reasonably well but failed to resolve extremes, the
diurnal cycle, and the dynamic forcing of precipitation; downscaling
to 30 km improved these characteristics of precipitation, with the
greatest improvement in the representation of extremes in the central
U.S. (Harding et al., 2013).

Many dynamic downscaling methods (DDMs) and statistical down-
scaling approaches (SDAs) have been developed to improve the poor
performance of GCMs at local and regional scales. DDMs are based on
Regional Climate Models (RCMs) or Limited Area Models (LAMs) that
have finer horizontal grid resolution of surface features (Xu, 1999;
Laprise, 2008). For instance, a fine computational grid over a limited do-
main was nested within the coarse grid of a GCM in LAMs (Anthes,
1983; Giorgi, 1990; Walsh and McGregor, 1997). A numerical method
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for modeling climate on a regional scale was developed, whereby large-
scale weather systemswere simulated with a GCM and the GCMoutput
was used to provide boundary conditions needed for high-resolution
mesoscale model simulations over the region of interest (Dickinson et
al., 1989). A one-waynestingmethodwasused to develop a regional cli-
mate model (RCM) on a spatial resolution of 50 km × 50 km driven by
the output from a GCM (Jones et al., 1995). A RCM, the non-hydrostatic
Weather Research and Forecasting model (WRF), was nested into the
climate forecast system (CFS) of the coupled atmosphere-ocean general
circulation model (CGCM) from the National Center for Environmental
Prediction (NCEP) to downscale the winter precipitation prediction
over continental China between 1982 and 2008. A comparison of
DDMs and SDAs indicated that a DDM based on non-linear artificial
neural networks was found to be the best at modeling the inter-annual
variability of rainfall indices (Haylock et al., 2006). The optimized WRF
reduced error from the optimized CFS by 30% and increased pattern cor-
relation by 0.12 (Yuan et al., 2012). It was found that themajority of the
difference in precipitation between the RCM and GCM can be explained
by their difference in topographic height (Tselioudis et al., 2012). These
DDMs havemanydisadvantages such as their extensive and costly com-
puting requirements, too coarse resolutions (in the order of 11 km) that
are not suitable for local scale studies, their dependence on lateral and
lower boundary conditions prescribed by the GCM, and assumptions
of stationarity incorporated within their many sub-grid parameteriza-
tion schemes (Khalili et al., 2013).

The derivation of local scale information from integrations of coarse-
resolution GCMswith the help of statistical models fitted to present ob-
servations is generally referred to as SDA (Zorita and von Storch, 1999).
SDAs uses statistical transfer functions (STFs) representing observed re-
lationships between larger-scale atmospheric variables and local quan-
tities (Pielke andWilby, 2012). Statistical approaches have been widely
used to bridge the gap between the large- and the local-scale (e.g.,
Hewitson and Crane, 1996; Charles et al., 1999; Wilby et al., 2002;
Gachon and Dibike, 2007; Dibike et al., 2008).

Downscaling GCMs using STFs have emerged as a popular approach
to increase spatial resolutions and therefore makes GCMsmore applica-
ble to regional and local analysis in China. For instance, an STF was eval-
uated with daily mean air temperature, pan-evaporation, and
precipitation data (1961–2000) from 11 weather stations in the Haihe
River basin; the results showed that the coefficients of determination
between observed and downscaled mean temperature, pan-evapora-
tion, and precipitation were 99%, 93%, and 73%, respectively (Chu et
al., 2010). An STFwas applied to generate a daily time-series of temper-
ature and precipitation (1961–2099) estimates for the Yellow River
Basin using outputs from the third version of the Hadley Center coupled
model (HadCM3); the projections showed that annual average maxi-
mum and minimum temperature would rise by 5.0 °C and annual pre-
cipitation would increase by 54–150 mm in the 2080s (Liu et al.,
2011a). Two STFs, the nonhomogeneous hidden Markov model
(NHMM) and the statistical down-scalingmodel (SDSM),were evaluat-
ed based on observed daily precipitation over the Tarim River basin, an
arid basin in western China; results showed that there was little differ-
ence in model performance for dry- and wet-spell length between
NHMM and SDSM, but NHMM exhibited better performance than
SDSM for wet-day precipitation estimates (Liu et al., 2011b). An STF
was presented on the basis of the relationships between precipitation
and other environmental factors in the Qaidam Basin such as topogra-
phy and vegetation, which was developed for downscaling the spatial
precipitation fields of these remote sensing products (Jia et al., 2011).

An STF was built up to construct future scenarios of extreme daily
temperature, and precipitation in the Dongjiang River basin of China
in the 21st century from the HadCM3model under the A2 and B2 emis-
sion scenarios; the biases for the maximum temperature, minimum
temperature, and precipitation were 1.1 °C, 0.12 °C, and 0.39 mm/day
(Yang et al., 2012). An STFwas used to spatially downscale extremepre-
cipitation and temperature indices of six GCMs under three emission
scenarios (A1B, A2, B1) from grid outputs to target stations to project
their potential spatio-temporal changes on the Loess Plateau of China
during the 21st century. The results indicated that the present change
trend of extreme climate would continue during the 21st century, i.e.
longer heat-wave duration and growing season length, less cold ex-
tremes, smaller annual extreme temperature range, more frequent
and intense precipitation, and longer drought duration (Li et al.,
2012). An STF based on GCMoutputs from a project of the Development
of a EuropeanMulti-model Ensemble System for Seasonal to Interannu-
al Prediction (DEMETER) and observation data of large-scale circulation
variables was used to predict autumn precipitation in China (Liu and
Fan, 2013).

In this article, STFs for mean annual temperature (MAT) and mean
annual precipitation (MAP) are developed by analyzing spatial station-
arity. The STFs are constructed by a combination of trend surfaceswith a
method for high accuracy surface modeling (HASM) (Yue, 2011; Yue et
al., 2013b).

2. Materials and methods

The CMIP5 datasets ofmonthly mean temperature and precipitation
were provided by the National Climate Center of China. They include
historical simulations and three Representative Concentration Pathway
(RCP) scenarios, RCP2.6, RCP4.5 and RCP8.5. Theywere created by using
the simple average of the outputs from the 21 CMIP5 models for which
the spatial resolutions are unified into 1° × 1° by ANUSPLIN
interpolation.

Ten-day observation data of temperature and precipitationwere col-
lected from 735 meteorological stations scattered across China from
1961 to 2010 (National Meteorological Information Center of China:
http://www.nmic.gov.cn) (Fig. 1a). A digital elevation model (DEM)
from the Shuttle Radar TopographyMission (SRTM) of China at a spatial
resolution of 90 × 90 m (http://srtm.csi.cgiar.org) was upscaled into a
DEM at a spatial resolution of 1 km× 1 kmusing a cubic convolution re-
sampling approach. The DEMwas used as auxiliary data to develop the
statistical transfer function for MAT and MAP.

A zoning system dividing the landmass of China into nine regions in
terms of matching temperature, precipitation and soil was adopted to
make it easier to analyze the changes in precipitation and temperature
from one place to another (Zhou et al., 1981). The nine regions are re-
spectively termed as Ri, i=1,2,… ,9 (Fig. 1b).

A rectangular region (60°E–149°E, 0.5°N–49.5°N) was extracted
from the CMIP5 datasets, which covers the whole land mass of China.
It is termed a China-CMIP5 dataset. It includes 90× 50=4500 grid cells.

A variation coefficient can be formulated as:

CV ¼ σ
Z
� 100% ð1Þ

where σ is the standard deviation andZrepresents a mean property
value.

Latitude and elevation were selected as explanatory variables for
simulating MAT by means of geographically weighted regression
(GWR). Then, we obtained three surfaces representing the intercept,
latitude regression coefficient and elevation regression coefficient. The
variation coefficients of the intercept, latitude regression coefficient
and elevation regression coefficientwere 24.66%, 23.36% and 21.30%, re-
spectively, measured in terms of the variation coefficient formulation.
They are all less than 25%. This means that MAT exhibits spatial station-
arity and that trend surfaces of MAT can be simulated by ordinary least
squares (OLS).

The OLS equation of MAT using the China-CMIP5 dataset and taking
the DEM at the spatial resolution of 1 km×1 kmas auxiliary data can be
expressed:

RMAT x; yð Þ ¼ 41:585−10−5 � 0:982y−404:090Ele x; yð Þð Þ ð2Þ

http://www.nmic.gov.cn
http://srtm.csi.cgiar.org


Fig. 1.Maps showing (a) the spatial distribution of the meteorological stations in China, and (b) a digital elevation model with the nine regions of China overlaid.

32 T. Yue et al. / Global and Planetary Change 146 (2016) 30–37
where RMAT(x,y)is MAT from the OLS regression of the China-CMIP5
data during the period from 1976 to 2005, y represents latitude (m),
and Ele(x,y) is the elevation (m) at the location (x,y).

The downscaling formulation of MAT can be expressed as:

DMAT x; yð Þ ¼ RMAT x; yð Þ þ HASM MAT j−RMAT j
� � ð3Þ

where DMAT(x,y)represents the downscaled MAT, MATj the observed
MAT at meteorological station j, HASM(MATj−RMATj) the residual sur-
faces of the downscaled MAT improved by HASM at the spatial resolu-
tion of 1 km × 1 km (Yue, 2011; Yue et al., 2013a).

Surfaces of latitude, longitude, elevation and aspect regression coef-
ficients as well as intercept can be created by simulating the relation-
ship of MAP from the China-CMIP5 dataset with latitude, longitude,
elevation and aspect using GWR. The variation coefficients of the sur-
faces of the longitude and aspect regression coefficients exceeded
100%, which indicates strong variation; those for the latitude and eleva-
tion regression coefficients aswell as the intercept are greater than 40%,
indicating moderate variability. Latitude, longitude, elevation and as-
pect as well as intercept are non-stationary at the 1% significance
level. It is better to simulate MAP by means of GWR. In other words,
MAT can be modeled as a linear function of latitude and elevation,
while regression coefficients of latitude, longitude, elevation and aspect
for MAP are best determined locally instead of globally.

MAP values from the China-CMIP5 dataset were normalized by
using the following formulation to stabilize the simulation processes:

P x; yð Þ ¼ OMAP x; yð Þ
MAX OMAP x; yð Þf g ð4Þ

where P(x,y) is a normalization value ofMAP at grid cell (x,y) during the
period from 1976 to 2005,OMAP(x,y) is the original MAP from the
China-CMIP5 dataset during the period from 1976 to 2005, and
MAX{OMAP(x,y)} is the maximum value of MAP from the China-
CMIP5 dataset during the period.

To ensure the normality of GWR, a BOX-COX transformation ofP(x,y)
(Box and Cox, 1964) was conducted as follows:

Ψ0:4 P x; yð Þð Þ ¼ P x; yð Þð Þ0:4−1
� �

=0:4 ð5Þ

A trend surface of the transformed P(x,y)was then created bymeans
of GWR:

Ψ0:4 P xyð Þxð Þ ¼ θ0 xyð Þ þ θ1 xyð Þ � xþ θ2 xyð Þ � yþ θ3 xyð Þ � Ele xyð Þ
þ θ4 xyð Þ � ICA xyð Þ ð6Þ
where θ1(x,y), θ2(x,y), θ3(x,y) and θ4(x,y)as well as θ0(x,y)are respec-
tively the coefficients of the latitude, longitude, elevation, aspect, and
the intercept.

The MAP observations frommeteorological stations were employed
to improve the trend surface. The normalized downscaled-OMAP with
the BOX-COX transformation at a spatial resolution of 1 km × 1 km
can be formulated as follows:

Ψ0:4 dMAP x; yð Þð Þ ¼ Ψ0:4 P x; yð Þð Þ þ HASM Ψ0:4 MAP j=MAX MAP j x; yð Þ� �� �
−Ψ0:4ðPðx; yÞ

� �

¼ Ψ0:4 P x; yð Þð Þ þ HASM ε j
� � ð7Þ

where εj=Ψ0.4(MAPj/MAX{MAPj(x,y)})−Ψ0.4(P(x,y)is the residue of
Ψ0.4(P(x,y)) at meteorological station j, HASM{εj} represents the spatial
interpolation of the residues at the meteorological stations, MAPj is the
observedMAP atmeteorological station j, and dMAP(x,y) is the normal-
ized downscaled-OMAP at the location (x,y) during the period from
1976 to 2005.

After an inverse BOX-COX transformation and inverse normaliza-
tion, the downscaled-OMAP was finally formulated as follows:

DMAP x; yð Þ ¼ MAX OMAP x; yð Þf g � 0:4 �Ψ0:4 dMAP x; yð Þð Þ þ 1ð Þ 1
0:4 ð8Þ

The procedure from Eqs. (4) to (8) is termed as HASM-GB. Similarly,
we can get IDW-GB, OK-GB and Spline-GB when IDW, ordinary Kriging
(OK) and Spline are used to interpolate the residues, respectively. The
process of Eqs. (2) and (3) is termed HASM-OLS and IDW-OLS, OK-
OLS and Spline-OLS could be developed in similar ways.

3. Validation

3.1. Comparison of accuracies from different approaches.

The mean absolute and mean relative errors of the downscaled
OMAT and OMAP surfaces were formulated as follows:

DTAE ¼ 1
n
�
Xn

j¼1

DMAT j‐MAT j
�� �� ð9Þ

DTRE ¼ 100%� DTAE=
1
n

Xn

j¼1

MAT j
�� ��

0
@

1
A ð10Þ

DPAE ¼ 1
n
�
Xn

j¼1

DMAP j‐MAP j
�� �� ð11Þ



Table 1
Comparison of accuracies of downscaled CMIP5 using different methods.

Error IDW Kriging Spline IDW-OLS Kriging-OLS Spline-OLS HASM-OLS

MAT DTAE (°C) 14.11 14.15 14.16 0.66 0.67 1.11 0.66
DTRE (%) 128 128 128 6 6 10 5

MAP DPAE (mm) 333 334 334 86 81 139 79
DPRE (%) 42 42 42 11 10 17 9
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DPRE ¼ 100%� DPAE=
1
n

Xn

j¼1

MAP j
�� ��

0
@

1
A ð12Þ

where DMATj and DMAPj are respectively the downscaled OMAT and
OMAP at meteorological station j, MATj and MAPj are respectively the
observed MAT and MAP at meteorological station j, DTAE and DPAE
are the mean absolute errors of the downscaled OMAT and OMAP, and
DTRE and DPRE are the mean relative errors of the downscaled OMAT
and OMAP.

The results from different methods indicated that consideration of
non-stationarity can efficiently improve the accuracy of the simulated
climatic elements (Table 1). The relative errors of the downscaled
OMAT using IDW-OLS, Kriging-OLS and Spline-OLS were decreased by
122%, 122% and 118%, respectively compared with the ones using
IDW, OK, and Spline. The relative errors of the downscaled OMAP gen-
erated with IDW-GB, Kriging-GB and Spline-GB were 31%, 32% and
25% lower, respectively than those generated with IDW, Kriging and
Spline. The best results were obtained when HASM-OLS and HASM-GB
were employed to downscale OMAT and OMAP since the absolute er-
rors were 0.66 °C and 79mmand the relative errors were 5% and 9%, re-
spectively. HASM-OLS and HASM-GB were at least 1% more accurate
than all of the improved classic methods.

3.2. Validation of CMIP5 baseline data

Regression analysis for the whole land mass of China produced cor-
relation coefficients of {OMATj} with {MATj} and of {OMAPj} with {MAPj}
Fig. 2.Map showing (a) the OMAT from the China-
of 0.90 and 0.82, respectively, while the ones for {DMATj} with {MATj}
and {DMAPj} with {MAPj} were 0.99 and 0.97, respectively in which
OMATj and OMAPj represent respectively OMAT and OMAP at meteoro-
logical station j,MATj andMAPj the observedMAT andMAP at meteoro-
logical station j, DMATj and DMAPj the downscaled OMAT and OMAP
at meteorological station j by means of HASM-OLS and HASM-GB
respectively, j = 1, 2, …, 735. In other words, the downscaling
processes made the correlation coefficient of annual mean temperature
10% higher and that for mean annual precipitation 18% higher (Figs. 2
and 3).

Results from HASM-OLS and HASM-GB were cross-validated using
observational data frommeteorological stations across China for the pe-
riod 1976–2005. Cross-validation was comprised of four steps: (1) 10%
of the meteorological stations were removed for validation prior to
model creation; (2) DMAT and DMAP during the period 1976–2005
were calculated at a spatial resolution of 1 km× 1 km using the remain-
ing 90% of the meteorological stations; (3) MAE was calculated using
the 10% removedmeteorological stations; and (4) the 10% removedme-
teorological stations were then returned to the pool of available sta-
tions. This process is repeated until DMAT and DMAP at all
meteorological stations have been validated in this manner and simula-
tion error statistics were obtained.

We used six indices to formulate the MAEs of OMAT and OMAP as
well as the reduction of the MAEs using the HASM-OLS and HASM-GB
downscaling processes as follows:

OTAE ið Þ ¼ 1
ni

�
Xni
j¼1

OMAT j ið Þ‐MAT j ið Þ
�� �� ð13Þ
CMIP5 dataset; and (b) the downscaled MAT.



Fig. 3.Map showing (a) the OMAP from the China-CMIP5 dataset; and (b) the downscaled MAP.
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OPAE ið Þ ¼ 1
ni

�
Xni
j¼1

OMAP j ið Þ‐MAPj ið Þ
�� �� ð14Þ

DTAE ið Þ ¼ 1
ni

�
Xni

j¼1

DMAT j ið Þ‐MAT j ið Þ
�� �� ð15Þ

DPAE ið Þ ¼ 1
ni

�
Xni

j¼1

DMAP j ið Þ‐MAP j ið Þ
�� �� ð16Þ

RT ið Þ ¼ 100%� OTAE ið Þ−DTAE ið Þð Þ=OTAE ið Þ ð17Þ

RP ið Þ ¼ 100%� OPAE ið Þ−DPAE ið Þð Þ=OPAE ið Þ ð18Þ

where i = 1, 2, …, 8 and 9 represent respectively regions R1, R2, …, R8

and R9; ni is the total number of meteorological stations in region Ri;
OTAE and OPAE are respectively the MAEs of OMAT and OMAP; DTAE
and DPAE are respectively the MAE of the downscaled MAT and MAP;
RT and RP respectively represent the improved ratios of the MAEs by
the downscaling processes of OMAT and OMAP; OMATj(i) and OMAPj(i)
are respectively the original MAT and MAP from the China-CMIP5
dataset at the jth meteorological station in the region Ri; DMATj(i) and
DMAPj(i) are respectively the downscaled MAT and MAP at the jth me-
teorological station in the region Ri; andMATj(i) andMAPj(i) are respec-
tively observed MAT and MAP at the jth meteorological station in the
region Ri.
Table 2
A comparison of errors from the China-CMIP5 dataset with those from downscaled results.

Region OTAE(°C) DTAE(°C) OTAE-DTAE (°C) RT (%)

R1 1.53 0.68 0.85 55.56
R2 3.39 0.84 2.55 75.22
R3 1.12 0.44 0.68 60.71
R4 2.58 0.81 1.77 68.60
R5 4.64 0.72 3.92 84.48
R6 2.64 1.13 1.51 57.20
R7 0.62 0.21 0.41 66.13
R8 1.19 0.43 0.76 63.87
R9 1.21 0.61 0.6 49.59
China 2.04 0.67 1.37 67.16
Validation results indicated that the MAE of OMAT was 2.04 °C for
the whole of China on average (Table 2). The regions, which had larger
MAEs than the whole of China, included the regions R5 (Tibet plateau),
R2 (arid area), R4 (Loess plateau), and R6 (Sichuan Basin plus Yunnan-
Guizhou plateau). Their MAEs were respectively 4.64, 3.39, 2.58 and
2.64 °C because the OMAT from the China-CMIP5 dataset were lower
than the observations from the meteorological stations in general.
After the downscaling processes, the MAE of DMAT for the whole of
China was reduced to 0.67 °C and the accuracy was increased by
67.16%. The improved ratios of the MAEs were 84.48, 75.22, 68.6 and
7.2%, respectively for the Tibet plateau, the arid area, the Loess plateau,
and the Sichuan Basin plus the Yunnan-Guizhou plateau.

TheMAEof OMAP from the China-CMIP5 datasetwas 350.52mmfor
the whole of China on average. The MAEs were larger in the Tibet pla-
teau, Loess plateau and Sichuan Basin plus Yunnan-Guizhou plateau,
given values of 770.51, 656.57 and 386.03 mm, respectively. The
OMAP from the China-CMIP5 dataset was higher than the observed
values in general. The downscaling process reduced the MAE of DMAP
to 79.12 mm and led to an improved ratio of 77.43%, when applied to
the whole land mass of China. The improved ratios of the MAEs were
greater than 77.43% for the Tibet plateau, arid area, the Loess plateau
and northeastern China (97.09, 96.35, 91.34, 88.53 and 88.42%,
respectively).

In short, the China-CMIP5 dataset had problems such that it was un-
able to describe climatic features on regional levels in China well and to
express the variability of regional climates. The method combining
HASM with geostatistics meant the China-CMIP5 dataset was able to
be downscaled from 1° × 1° to 1 km × 1 km and that the accuracy
OPAE(mm) DPAE(mm) OPAE-DPAE(mm) RP(%)

255.98 29.63 226.35 88.42
290.13 10.60 279.53 96.35
170.59 19.56 151.03 88.53
656.57 56.84 599.73 91.34
770.51 99.50 671.01 87.09
386.03 87.55 298.48 77.32
252.03 151.03 101 40.07
211.19 86.19 125 59.19
225.47 151.28 74.19 32.90
350.52 79.12 271.4 77.43



Table 3
Comparison of OMAT from CMIP5 with MAT observed at meteorological stations during
the period from 1976 to 2005.

Regions
Observed
MAT (°C)

OMAT
from
CMIP5
(°C)

Difference between
OMAT and MAT at all
stations on average (°C)

Proportion of stations
at which MAT was
overestimated (%)

R1 5.29 4.60 −0.69 23.53
R2 7.88 4.52 −3.36 18.18
R3 4.58 3.92 −0.66 27.71
R4 9.58 6.98 −2.6 9.43
R5 3.56 −0.53 −4.09 9.80
R6 15.65 12.77 −2.88 14.68
R7 21.63 21.07 −0.56 40.82
R8 13.32 12.19 −1.13 18.18
R9 17.07 16.61 −0.46 20.49
China 11.20 9.37 −1.83 22.05

Table 4
Comparison of OMAP from CMIP5 with MAP observed at meteorological stations during
the period of from 1976 to 2005.

Regions

Observed
MAP
(mm)

OMAP
from
CMIP5
(mm)

Difference between
OMAP and MAP at all
stations on average
(mm)

Proportion of stations
at which MAP was
overestimated (%)

R1 355.11 589.00 233.89 98.04
R2 130.18 367.29 237.11 93.26
R3 581.55 733.82 152.27 92.77
R4 490.72 1025.90 535.18 100.00
R5 491.34 1332.84 841.5 100.00
R6 1085.02 1484.85 399.83 83.49
R7 1606.41 1317.03 −289.38 22.45
R8 670.27 844.09 173.82 96.36
R9 1463.36 1417.00 −46.36 43.80
China 800.69 1063.78 263.09 79.92
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was considerably improved because of the introduction of both ground
observations and HASM.

4. Discussion and conclusions

A comparison between CMIP5 data and observations at 735 meteo-
rological stations indicated thatMATwas underestimated andMAPwas
overestimated in general across the whole of China. OMAT from CMIP5
was lower than observedMAT at 78% of the 735meteorological stations,
and 1.83 °C lower on average across thewhole of China (Table 3, Fig. 4).
OMAT at the stations where MAT was underestimated was 2.81 °C
lower than observed on average, led by regions R4, R5, R6 and R2 with
MATs underestimated by 2.6, 4.09, 2.88 and 3.36 °C, respectively. The
meteorological stations atwhichOMATwas overestimatedweremainly
located in eastern China, accounting for 22.05% of the total meteorolog-
ical stations. OMAT was 1.57 °C higher than the observed MAT at the
overestimated locations on average.

MAP was overestimated at 80% of the 735 meteorological stations,
while the underestimation problems appeared in the regions where
MAP exceeded 1500mm(Table 4, Fig. 5). OMAPwas 263.09mmhigher
on average across the whole of China. At the stations where MAP was
Fig. 4. Comparison between original values of mean annual temperature from
overestimated, OMAP was 393.96 mm higher on average. OMAP was
overestimated at 100%, 100%, 98%, 96%, 93%, 93% and 84% of the meteo-
rological stations in regions R4, R5, R1, R8, R2, R3 and R6, respectively. The
stationswhereMAPwas underestimatedweremainly distributed in re-
gions R7 and R9, accounting for 78% and 56% of the stations in the two
regions respectively. The OMAP values were 449.19 and 204.54 mm
lower in R7 and R9 on average.

A statistical analysis of China-CMIP5 data indicated that MAT ex-
hibits spatial stationarity, while MAP exhibits spatial non-stationarity.
Therefore, the trend surfaces of MAT were created by OLS and those
for MAP were generated by GB. When IDW, Kriging, Spline and HASM
were used to improve the residuals of the OLS trend surfaces of MAT
and the GB surfaces of MAP, HASM always achieved the highest
accuracy.

The validation of China-CMIP5 dataset during the period from 1976
to 2005 demonstrated that the biggest errors appeared in western
China. For instance, the MAEs of MAT and MAP were respectively
4.64 °C and 770.51 mm on the Tibet plateau. On average, the MAEs of
MAT and MAP were respectively 2.04 °C and 350.52 mm for the whole
of China. HASM-OLS and HASM-GB considerably reduced the MAEs of
MAT and MAP. The improved ratios of MAEs of MAT and MAP were
CMIP5 and mean annual temperature observed at meteorological stations.



Fig. 5. Comparison between original values of mean annual precipitation from CMIP5 and mean annual precipitation observed at meteorological stations.
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respectively 67.16% and 77.43% for the whole of China, and 84.48% and
97.09% for the Tibet plateau.

In terms of the China-CMIP5 dataset, theMAEs of the three scenarios
of OMAT were very similar during the period 2006–2010. All of the
MAEs were 2.2 °C for the whole of China on average. The regions
where the MAEs exceeded 2.2 °C, included the Tibet plateau, the arid
area, the Loess plateau, and the Sichuan basin plus the Yunnan-Guizhou
Table 5
Mean absolute errors of mean annual temperature of RCPs during the period from 2006 to
2010 (subscripts 1, 2 and 3 of OTAE, DTAE and RT represent the scenarios of RCP2.6,
RCP4.5 and RCP8.5 respectively).

Region OTAE1
(°C)

DTAE1
(°C)

RT1
(%)

OTAE2
(°C)

DTAE2
(°C)

RT2
(%)

OTAE3
(°C)

DTAE3
(°C)

RT3
(%)

R1 1.45 0.67 53.58 1.46 0.68 53.67 1.42 0.67 52.64
R2 4.27 0.86 79.92 4.24 0.85 79.84 4.14 0.86 79.31
R3 0.90 0.46 48.26 0.92 0.46 49.67 0.89 0.46 48.01
R4 2.67 0.98 63.26 2.64 0.98 62.89 2.56 0.98 61.78
R5 5.43 0.69 87.26 5.32 0.70 86.93 5.37 0.69 87.09
R6 2.65 0.85 67.97 2.62 0.85 67.59 2.61 0.85 67.51
R7 1.13 0.29 74.49 1.07 0.29 73.02 1.13 0.29 74.40
R8 1.58 0.32 79.91 1.55 0.32 79.55 1.52 0.32 79.21
R9 1.48 0.40 73.14 1.48 0.40 73.14 1.45 0.40 72.58
China 2.22 0.61 72.62 2.20 0.61 72.32 2.18 0.61 72.02

Table 6
Mean absolute errors of mean annual precipitation of RCPs during the period from 2006 to 2010
RCP8.5 respectively).

Region OPAE1 (mm) DPAE1 (mm) RP1 (%) OPAE2 (mm)

R1 284.65 13.19 95.37 263.52
R2 229.66 20.79 90.95 228.15
R3 211.68 37.99 82.05 197.19
R4 583.55 67.74 88.39 589.49
R5 758.52 72.89 90.39 765.54
R6 400.94 59.90 85.06 392.47
R7 308.54 92.25 70.10 309.56
R8 252.95 70.60 72.09 230.29
R9 211.93 165.27 22.02 204.29
China 345.88 71.01 79.47 338.18
plateau (Table 5). TheMAEs of RCP2.6, RCP4.5 and RCP8.5 were respec-
tively 5.43, 5.32 and 5.37 °C for the Tibet plateau, 4.27, 4.24 and 4.14 °C
for the arid area, 2.67, 2.64 and 2.56 °C for the Loess plateau, and 2.65,
2.62 and 2.61 °C for the Sichuan basin plus the Yunan-Guizhou
plateau.CMIP5 scenarios underestimated MAT mostly. Proportion of
the meteorological stations, where OMAT was lower than MAT, was
88% under the scenario of RCP2.6, 88% under RCP4.5, and 87% under
RCP8.5 in thewhole of China. Especially, in Yangtze river basin, the pro-
portionwasmore than 92% under all the three scenarios. In general, the
scenario of RCP8.5 had a better performance comparing with other two
scenarios.

After the downscaling process, all of the MAEs for the DMAT scenar-
ios of RCP2.6, RCP4.5 and RCP8.5 were reduced to 0.61 °C for the whole
land mass of China. The improved ratios of the MAEs for all of China
were higher than 72%, 87% for the Tibet plateau, 79% for the arid area,
62% for the Loess plateau, and 68% for the Sichuan basin plus the
Yunan-Guizhou plateau.

The statistical analysis indicated that the MAEs of OMAP under sce-
narios of RCP2.6, RCP4.5 and RCP8.5 were respectively 345.88, 338.18
and 340.93 mm for the whole land mass of China on average (Table
6). The Tibet plateau, Loess plateau, and the Sichuan basin plus the
Yunan-Guizhou plateau had larger errors. The MAEs of the RCP2.6,
RCP4.5 and RCP8.5 respectively were 758.52, 765.54 and 765.01 mm
for the Tibet plateau, 583.55, 589.49 and 581.03 mm for the Loess
(subscripts 1, 2 and 3 of OPAE, DPAE and RP represent the scenarios of RCP2.6, RCP4.5 and

DPAE2 (mm) RP2 (%) OPAE3 (mm) DPAE3 (mm) RP3 (%)

12.91 95.10 271.36 13.82 94.91
20.43 91.05 220.40 20.46 90.72
37.77 80.84 209.16 38.07 81.80
66.39 88.74 581.03 68.01 88.29
71.87 90.61 765.01 72.55 90.52
56.39 85.63 402.05 56.55 85.93
91.15 70.55 302.86 93.34 69.18
70.66 69.32 246.40 70.89 71.23
163.34 20.04 202.04 163.97 18.84
70.21 79.24 340.923 70.85 79.22
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plateau, and 400.94, 392.47 and 402.05 mm for the Sichuan basin plus
the Yunan-Guizhou plateau. At 80% of the meteorological stations, pre-
cipitation was overestimated by all the three scenarios of CMIP5. Espe-
cially, in the area covered by Tibet plateau, Loess plateau and Inner
Mongolia plateau, all the three scenarioswere bigger than actual precip-
itation at all the meteorological stations. However, the actual precipita-
tionwas smaller than all the scenarios at almost all stations whereMAP
was bigger than 1500 mm. The scenario of RCP4.5 performed better
comparatively.

The downscaling process made the DMAP 70% more accurate than
OMAP for the whole of China on average. The improved ratios of
MAEs were more than 90% in northeast Inner Mongolia, in the arid
area, and the Tibet plateau. The MAEs of the three scenarios were de-
creased to 13.19, 12.91 and 13.82 mm in northeast Inner Mongolia, to
20.79, 20.43 and 20.46 mm in the arid area, and to 72.89, 71.87 and
72.55 mm for the Tibet plateau. However, the MAEs of the DMAP for
the three scenarios were still as high as 165.27, 163.34 and
163.97mm respectively in themiddle and lower reaches of the Yangtze
River.
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