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a b s t r a c t

In multi-scale digital terrain analysis, the main goal is to preserve the basic ‘skeleton’ with changing

scales and to deliver more consistent measurements of terrain parameters at different scales. The

drainage lines serve the basic morphology features and ‘skeleton’ in a basin, and therefore play an

important role for most applications. Many drainage-constrained methods for DEM generalization have

been proposed over the last few decades. This article compares three drainage-constrained methods: a

Stream Burning algorithm, the ANUDEM algorithm as an example of a surface fitting approach, and the

Compound method as an example of a constrained-TIN approach. All of these methods can be used to

build coarser-scale DEMs while taking drainage features into account. The accuracy of the elevations

and several terrain derivatives (slope, surface roughness) in the new digital terrain models along with

the geometry or shape of key terrain features (streamline matching rate, streamline matching error) is

then compared with each other to analyze the efficacy of these methods. The results show that the

Compound algorithm offers the best performance over a series of generalization experiments.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

DEM generalization has been widely used in multi-scale digital
terrain analysis. When a coarser analytical scale is required, the
original finer-resolution DEM is generalized to establish a new
DEM with a different resolution. At the same time, the terrain
parameters and derivatives such as slope, aspect, curvature and
drainage patterns may subsequently change (Zhang et al., 1999;
Wilson and Gallant, 2000; Zhou and Liu, 2004; Tay et al., 2005).

One of the most widely used methods for DEM generalization
is a resampling method, which requires averaging the neighbor-
ing cells of a high-resolution, square-grid DEM into a series of
lower-resolution data sets (Wolock and Price, 1994; Kienzle,
2004; Li, 2008). This method will inevitably have a smoothing
effect. Another common approach is to construct a multi-level
Triangulated Irregular Network (TIN) using critical points and
integral lines to represent the multi-scale digital terrain surface
(Wu and Amaratunga, 2003; Danovaro et al., 2006). However,
these methods often change the terrain features and derivatives
when the DEM resolution is changed (Wilson and Gallant, 2000;
Wu et al., 2008; Zhou and Chen, 2011).
ll rights reserved.
In many practical applications, the goal is to retain significant
terrain features, such as peaks, saddles, valley, ridge and drainage
lines for coarser scale digital terrain analysis, and to deliver more
consistent measurements of terrain parameters at different
scales. Therefore, a ‘morphology-based’ approach is proposed,
which takes important topographic features into account and
retains the fundamental geomorphological and drainage features
while changing scales (Weibel, 1992; Gesch, 1999; Soille et al.,
2003).

The role and character of drainage enforcement in digital
terrain analysis has evolved since Jenson and Domingue (1988)
first proposed the notion. However, the drainage lines still
constitute the basic morphology features and ‘skeleton’ in a basin,
and therefore play an important role in all of the ‘morphology-
based’ approaches. Numerous works over the last few decades
have proposed drainage-constrained methods for DEM general-
ization (e.g. Southard, 1991; Zakšek and Podobnikar, 2005;
Vázquez and Pascual, 2008). The main algorithms that focus on
drainage or stream lines can be categorized into three groups:
stream burning, surface fitting, and constrained-TIN algorithms.

A ‘stream burning algorithm’ can improve the replication of
stream positions by using a raster representation of a vector
stream network to trench known hydrological features into a
DEM at a user-specified depth (Saunders, 2000; Callow et al.,
2007). The advantages of this method are its simplicity, computa-
tional efficiency and tendency for the changes to affect fewer cells
in the landscape. However, stream burning also creates a
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Fig. 1. The original 10 m and 30 m DEM used in this study (3600�3600 cells,

10 m cell size; 1200�1200 cells, 30 m cell size). The red box indicates the area of

the original 3 m DEM (4000�4000 cells), and the black box indicates the area

reproduced in Figs. 3–7. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)
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discrepancy between the original DEM and the trenched ‘stream’
cells, leading to dramatic jumps in elevation, which are likely to
affect derived properties such as slope, particularly when a deep
trench is required to retain the preferred drainage lines.

Taking this idea one step further, more elaborate surface fitting
or interpolation methods can be used to fit the terrain surface. A
typical ‘surface fitting approach’ is the ANUDEM algorithm
(Hutchinson, 1989), which utilizes irregularly spaced elevation
data points (spot heights) and/or contour lines, streamlines, and
an iterative finite difference interpolation technique to generate
grid-based DEMs with few or no sinks. However, ANUDEM may
alter the entire DEM to eliminate abrupt jumps between stream
and non-stream cells (Callow et al., 2007), and this interpolation
method may not produce optimal results if poor input data are
selected (Wise, 2000). Another example is the fractal-based
method proposed by Belhadj and Audibert (2005). A skeleton of
the ridge and river networks is computed and stored in a DEM as
initial values, and the elevation data set is enriched using a novel
interpolation method based on a Midpoint Displacement Inverse
process. More recently, Ai and Li (2010) proposed a structured
analysis method to generalize DEM data through the identifica-
tion of minor valleys and filling the corresponding depressions.
With this approach, the unimportant valley branches are detected
based on hydrologic significance and the elevations of the grid
cells in these areas are raised to smooth the terrain surface.

The third approach utilizes TINs rather than the square-grid
DEMs used in the first two approaches. Some of the earliest
studies on TINs focused on the automated selection of significant
features to construct the TIN models, such as the peaks, pits,
passes, and points along ridge and channel lines and other breaks
of slope (Peucker and Douglas, 1975; Fowler and Little, 1979;
Heller, 1990; Lee, 1991). Douglas (1986) recommended using a
‘richline’ structure, in which the ‘rich’ lines referred to ridge and
drainage lines that contain a large amount of information about
the shape of the surface, for storing elevation data. Nelson et al.
(1999) proposed a tessellation algorithm for automatically creat-
ing TINs from a set of GIS objects that correspond to the drainage
features. Kidner et al. (2000) proposed a Multiscale Implicit
Triangulated Irregular Network to generate triangulated terrain
models that adapt their content and level of detail to the user’s
requirements. This implicit TIN only stores the vertices explicitly,
together with linear constraints, such as cliffs and ridge lines.
Danovaro et al. (2006) later proposed a Multi-resolution Surface
Network (MSN), which used critical points (minima, maxima,
saddle points) and integral lines to construct multi-resolution
TINs. Finally, Zhou and Chen (2011) have proposed a compound
method, which reconstructs the grid-based surface elevation data
to construct a drainage-constrained TIN that is optimized to keep
the important terrain features and slope morphology with the
minimum number of sample points.

This article, therefore, investigates the efficacy of three of the
aforementioned drainage-constrained methods for generating lower
resolution DEMs. The Stream Burning algorithm of Saunders (2000),
the ANUDEM algorithm (Hutchinson, 1989) as an example of a
surface fitting approach, and the Compound method (Zhou and
Chen, 2011) as an example of a constrained-TIN approach were used
to build coarser-scale DEMs of the same area, and the elevations and
various terrain derivatives were compared with one another to
evaluate the effectiveness and suitability of these methods.
Table 1
The spatial resolution and corresponding z-tolerance values.

Resolution (m) 10 30 50 90 125 150 250 500

Z-tolerance value (m) 8 20 30 50 70 90 130 180
2. Methodology and data Sources

We selected three different high-resolution DEMs, with reso-
lutions of 3, 10 and 30 m, respectively, to investigate the effect of
original resolution on DEM generalization. The 10 m and 30 m
DEMs cover the same area in southwestern Oregon (43.15–43.481
N, 123.67–124.121 W) in which the elevation ranged from 5 to
920 m (Fig. 1). The 10 m DEM is composed of 3,600�3,600 grid
cells, while the 30 m DEM is composed of 1,200�1,200 grid cells.
The 3 m DEM covered part of the same area (4,000�4,000 grid
cells; 43.22–43.331 N, 123.88–124.031 W) and the elevation
ranged from 44 to 760 m.

In the test, the original DEM was generalized to generate DEMs
with different spatial resolutions, such that the 3 m DEM was
resampled to 10, 30, 50, 90, 125, and 150 m spatial resolutions,
the 10 m DEM was resampled to 30, 50, 90, 125, 150, and 250 m
spatial resolutions, and the 30 m DEM was resampled to 50, 90,
125, 150, 250 and 500 m spatial resolutions, respectively. The
drainage network was retrieved from the original DEMs using the
simple ‘‘D8’’ flow routing algorithm (Mark, 1984) and it was
further generalized using the Douglas–Peucker algorithm
(Douglas and Peucker, 1973) with a threshold value of 3 m (up
to 10 m resolution), 10 m (from 10 to 30 m resolution), 30 m
(from 30 to 50 m resolution) and 50 m (for resolutions coarser
than 50 m) to match the scale of the generated DEMs.

For the Stream Burning algorithm, the drainage network was
generalized to the preferred scale and then rasterized using the ‘‘line
to raster’’ command in ArcGIS 9.3. The stream lines were burned to
the generalized DEMs by subtracting the descending depth (i.e.
10 m) along the drainage network from the respective DEM.

For the ANUDEM and Compound methods, the same signifi-
cant points (e.g. peak or ridge points) and drainage network were
used to ensure a fair comparison. Significant points were
retrieved by the maximum z-tolerance algorithm (Heller, 1990;
Chang, 2007), which relies on an iterative process starting with
only two triangles, and then inserting a point with the largest
elevation difference between the original DEM and TIN surface to
reconstruct the TIN on each pass, until no point remains with a
larger difference than some pre-determined threshold. The USGS
DEM data accuracy standard in which a RMSE of one-half contour
interval is the maximum permitted guided the specification of z-
tolerance values at different scales (Table 1). These two algo-
rithms used the same drainage network at each specified scale as
the Stream Burning algorithm.
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For the ANUDEM algorithm, the significant points and drai-
nage networks at a specified scale were interpolated in the DEM
using the ‘‘topo to raster’’ command in ArcGIS 9.3, while the
Compound method supplemented the maximum z-tolerance
algorithm with additional drainage feature points and embedded
streamlines to generate a drainage-constrained TIN.

The evaluation considered the accuracy of the new digital
terrain models and selected terrain derivatives along with the
geometry or shape of key terrain features, such as the shape of the
drainage network. Therefore, the comparison was composed of
three parts: namely, comparison of RMSEs, mean slope and
surface roughness, and the streamline matching rate (SMR) and
streamline matching error (SME).
Fig. 2. The streamline matching rate (SMR) and streamline matching error (SME).

The black lines denote streamlines retrieved from the original DEM, and the red

lines denote streamlines retrieved from the generalized DEM. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 3. Generalized DEMs generated from original 3 m DEM by three methods. The blu

places where morphological changes between the different methods are evident. (For in

to the web version of this article.)
2.1. Comparison of RMSE

The root mean square error (RMSE) is a good measure of the
accuracy of the original and generalized elevation surfaces pro-
duced with the aforementioned algorithms, and can be computed
as follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 ðZ

0
i�ZiÞ

2

n

s
ð1Þ

where Z denotes the elevation value of the original DEM, Z0

denotes the elevation value of the generalized DEM or TIN, i

denotes the ith unit, and n denotes the total number of units. The
unit is the grid cell of the original DEM, and Z0 is computed from
the generalized DEM or TIN at the center of each grid of the
original DEM.

2.2. Comparison of mean slope and surface roughness

The mean slope (S) and surface roughness (K) were also used
to compare the generalized DEMs created at varying scales with
the aforementioned algorithms, and can be specified as followed:

S¼

Pn
i ¼ 1 Si � AiPn

i ¼ 1 Ai

ð2Þ

K ¼
A0

A
¼

Pn
i ¼ 1 Aisec SiPn

i ¼ 1 Ai

ð3Þ
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e lines indicate the extracted drainage networks and the red circles indicate the

terpretation of the references to colour in this figure legend, the reader is referred
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where S denotes the slope, A denotes the projected area (i.e. two-
dimensional horizontal (planimetric) area of the DEM), A0 denotes
the surface area (i.e. the exposed (sloping) area of the DEM), i

denotes the ith unit, and n denotes the total number of units.

2.3. Comparison of SMR and SME

The streamline matching rate (SMR) and streamline matching
error (SME) show how well the drainage features were retained
(Zhou and Chen, 2011). The SMR specifies the rate of the changes
in the lengths of the drainage network or the similarity of the
shape between the original and generalized DEM, while the SME
measures the average dispersion between the features, and there-
fore represents the average streamline matching error (Fig. 2). To
compute the SMR and SME, stream buffers were generated with
widths matching the original DEM resolution and the resultant
buffer zones were overlaid with the streamlines retrieved from
the generalized DEM. We used these two factors to compare the
shape of the drainage network for the generalized DEMs derived
with the aforementioned algorithms, as follows:

SMR¼
L0

L
� 100 ð4Þ

SME¼
DA

L
ð5Þ

where the units of SMR and SME are percentages and meters,
respectively, L0 denotes the length of streamlines that fell into the
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Fig. 4. Generalized DEMs generated from original 30 m DEM by three methods. The bl

places where morphological changes between the different methods are evident. (For in

to the web version of this article.)
corresponding stream buffer zones, L is the total length of the
streamlines, and DA is the area of ‘sliver’ polygons between the
streamlines retrieved from the original and generalized DEM.
3. Results and discussion

3.1. Comparison of RMSE

Figs. 3 and 4 show three examples of the coarser resolution
DEMs generated with the selected methods from the original
3 and 30 m DEMs, respectively. There is a steady loss of clarity
and detail as the DEM resolution is relaxed. The results from using
the stream burning method reproduced in Figs. 3a and 4a show
the tendency for this approach to retain the drainage network
in the coarser DEMs. The smoothing effects of the surface fitting
approach of ANUDEM are evident in Figs. 3b and 4b which
also show how some of the detailed morphological features
were quickly lost with this particular method. Figs. 3c and 4c,
on the other hand, show how the main skeleton and some details
in each of the DEM were retained better with the Compound
method.

This assessment is confirmed by Table 2, which shows that the
ANUDEM method always produced the largest RMSE values for
the generalized DEMs, while the Compound method produced the
lowest RMSE values for all six DEMs generalized from the 3 m
DEM and four of six of the DEMs generated from the 10 and 30 m
DEMs. The Stream Burning algorithm produced the lowest RMSEs
m052m051

600 800 1000 m

ue lines indicate the extracted drainage networks and the red circles indicate the

terpretation of the references to colour in this figure legend, the reader is referred
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for the first two generalizations from the 10 and 30 m DEMs but
was passed by the Compound method because the RMSE values
from the Stream Burning algorithm increased more quickly (i.e.
9.7 times vs. 6.2 times for the Compound method when generat-
ing 250 m DEMs from the source 10 m DEM).
Table 2
RMSEs produced with different DEM generalization approaches.

Resolution (m)/Approach 10 30 50

3 ma

Stream Burning (m) 3.05 7.83 13.47

ANUDEM (m) 4.86 11.42 16.33

Compound (m) 2.57 6.54 10.25

10 m

Stream Burning (m) – 4.86 8.94
ANUDEM (m) – 11.16 16.01

Compound (m) – 6.38 9.41

30 m

Stream Burning (m) – – 9.11
ANUDEM (m) – – 15.66

Compound (m) – – 9.76

a 3 m, 10 m and 30 m refer to the original DEMs. The lowest RMSEs are bold.

30 m original 
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Fig. 5. 3D surfaces of DEMs generated from
Fig. 5 shows the 3D surfaces for the different resolution DEMs
(90, 150, and 250 m) generalized from the 30 m DEM using the
three methods. These images show how the DEM surface general-
ized with ANUDEM looks much smoother (Fig. 5b) and that the
Compound method (Fig. 5c) was able to retain more terrain
90 125 150 250 500

22.92 32.04 40.25 – –

25.66 33.90 42.42 – –

18.62 25.05 30.20 – –

15.71 24.48 34.58 51.85 –

24.59 32.12 38.62 54.55 –

15.61 22.79 30.04 45.82 –

15.50 24.11 33.14 49.87 72.68

23.96 31.82 38.12 54.44 78.31

15.65 22.28 28.32 42.07 64.98

800

400

600

0

200

1000 m

 m 052 m 051

original 30 m DEM by three methods.
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features at coarser resolutions than both ANUDEM and the Stream
Burning algorithm (Fig. 5a).
3.2. Comparison of the mean slope and surface roughness values

Figs. 6 and 7 show the slopes for a sample of the different
resolution DEMs generated with the three methods from the original
3 m and 30 m DEMs. The gradual changes in color show the gradual
decline in slope and surface roughness as the DEM resolution was
relaxed. In addition, a closer examination of the Stream Burning
results reproduced in Figs. 6a and 7a shows the tendency for this
method to increase slopes along the drainage lines (no doubt due to
the 10 m descending depth used to ‘retain’ the drainage network).
The slope maps generated with ANUDEM and reproduced in Figs. 6b–
7b and the surface roughness results confirmed the previously noted
tendency for this method to eliminate many significant slopes and
much of the surface roughness (such that many terrain features were
lost). The results for the Compound method reproduced in Figs. 6c–7c
show this method performed well in preserving the slopes at low to
moderate levels of generalization but that much of the detail was lost
Fig. 6. The slope of DEMs generated from
with this method (and the two previous methods) at high levels of
generalization (as illustrated by the slope maps for the 250 m DEMs
reproduced in Fig. 7 for example).

The superior performance of the Compound method is confirmed
by the results shown in Tables 3 and 4. The results summarized in
Table 3 show how the different methods produced slightly different
mean slope values at relatively fine resolutions and that these
discrepancies increased in magnitude at coarser resolutions because
the mean slope values decreased half as much for the Compound
method compared to the other two methods. The surface roughness
results summarized in Table 4 show a similar pattern. Finally, the first
entries in both Tables 3 and 4 show how the Stream Burning method
generated larger mean slope and surface roughness values when the
10 m DEM was generated from the source 3 m DEM (due to the 10 m
descending depth used to ‘retain’ the original drainage network).
3.3. Comparison of the SMR and SME values

Tables 5 and 6 show the streamline matching rate (SMR) and
streamline matching error (SME) values produced with different
original 3 m DEM by three methods.



Fig. 7. The slope of DEMs generated from original 30 m DEM by three methods.

Table 3
The mean slope values produced with different DEM generalization approaches.

Resolution (m)/Approach 10 30 50 90 125 150 250 500

3 ma(28.721)

Stream Burning (1) 29.62 26.32 23.62 19.56 16.87 15.33 – –

ANUDEM (1) 27.34 24.59 22.32 18.81 16.48 14.99 – –

Compound (1) 28.52 27.80 27.00 25.08 22.90 21.02 – –

10 m (22.861)

Stream Burning (1) – 22.35 20.81 18.00 15.97 14.77 11.29 –

ANUDEM (1) – 21.05 19.64 17.26 15.54 14.39 11.45 –

Compound (1) – 22.92 22.64 21.83 20.69 19.53 16.69 –

30 m (21.231)

Stream Burning (1) – – 20.08 17.46 15.50 14.33 11.02 7.15

ANUDEM (1) – – 18.74 16.58 15.00 14.01 11.44 8.05

Compound (1) – – 21.72 20.97 19.98 18.91 16.67 13.71

a The mean slopes of the original 3 m, 10 m and 30 m DEMs were 28.721, 22.861 and 21.231, respectively.
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DEM generalization approaches. Two general trends are evident:
the SMR values gradually decrease and SME values increase with
each method and source DEM with successively higher levels of
generalization.
These trends were most pronounced for the Stream Burning
algorithm for which the results started off reasonably well at high
spatial resolutions but deteriorated quickly beyond the initial
generalization step. The streamline matching rate fell below 50%



Table 4
The surface roughness values produced with different DEM generalization approaches.

Resolution (m)/Approach 10 30 50 90 125 150 250 500

3 ma (1.182)

Stream Burning 1.189 1.142 1.113 1.075 1.056 1.046 – –

ANUDEM 1.160 1.126 1.102 1.071 1.054 1.044 – –

Compound 1.173 1.161 1.151 1.132 1.114 1.098 – –

10 m (1.118)

Stream Burning – 1.107 1.091 1.067 1.052 1.044 1.026 –

ANUDEM – 1.096 1.079 1.060 1.047 1.041 1.022 –

Compound – 1.113 1.109 1.101 1.091 1.083 1.065 –

30 m (1.097)

Stream Burning – – 1.085 1.063 1.049 1.042 1.025 1.010

ANUDEM – – 1.074 1.057 1.047 1.041 1.027 1.013

Compound – – 1.098 1.092 1.084 1.076 1.062 1.045

a The surface roughness of the original 3 m, 10 m and 30 m DEMs were 1.182, 1.118 and 1.097, respectively.

Table 5
The SMR values produced with different DEM generalization approaches.

Resolution (m)/Approach 10 30 50 90 125 150 250 500

3 m

Stream Burning (%) 88.3 54.5 36.6 23.5 15.2 9.6 – –

ANUDEM (%) 81.4 65.9 58.3 51.6 48.0 45.2 – –

Compound (%) 91.6 78.3 67.3 58.1 51.5 47.5 – –

10 m

Stream Burning (%) – 87.5 56.6 37.9 25.3 19.5 10.7 –

ANUDEM (%) – 80.6 68.8 61.3 57.7 54.8 50.9 –

Compound (%) – 90.1 82.5 73.2 67.1 62.9 53.4 –

30 m

Stream Burning (%) – – 88.0 65.8 46.1 37.5 22.3 11.6

ANUDEM (%) – – 78.5 71.2 66.3 63.5 60.2 57.7

Compound (%) – – 89.8 82.8 76.6 72.1 67.5 60.3

Table 6
The SME values produced with different DEM generalization approaches.

Resolution (m)/Approach 10 30 50 90 125 150 250 500

3 m

Stream Burning (m) 3.1 8.0 15.5 24.1 33.4 40.7 – –

ANUDEM (m) 4.3 6.5 8.1 9.6 10.7 11.8 – –

Compound (m) 2.8 4.7 6.2 8.1 9.7 11.0 – –

10 m

Stream Burning (m) – 11.5 26.0 38.2 47.9 55.1 66.5 –

ANUDEM (m) – 14.4 18.7 21.9 25.5 23.7 29.6 –

Compound (m) – 10.2 13.5 17.2 19.5 21.3 26.6 –

30 m

Stream Burning (m) – – 16.9 38.9 55.3 61.8 85.8 120.2

ANUDEM (m) – – 25.7 32.1 37.0 40.2 44.5 50.5

Compound (m) – – 15.3 21.1 26.4 29.0 35.5 45.2
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after just two generalization steps for all three source DEMs
(Table 5) and the streamline matching errors grew five-fold or
more across the six generalization levels (Table 6). The results for
the ANUDEM method show how this method performed the
worst at the first generalization level for each of the source DEMs
but that its performance recovered thereafter and closely tracked
that of the Compound method, such that this method performed
well in preserving drainage features in the coarser DEMs. How-
ever, the results reproduced in Tables 5 and 6 show how the
Compound method produced the best matching and smallest
error rates for the drainage features for all 18 combinations of
generalization levels and source DEMs. This result can be
explained by the additional drainage-constrained edges that were
incorporated in the TIN generation process in this instance (see
Zhou and Chen (2011) for additional details).
4. Conclusions

In this study, we compared the capabilities of three drainage-
constrained methods—the Stream Burning algorithm of Saunders
(2000), ANUDEM (Hutchinson, 1989) and the Compound
Constrained-TIN approach of Zhou and Chen (2011)– in retaining
inherent morphological and drainage features. Five characteristics
of the morphological and drainage features of fluvial terrain
surfaces–the elevation, slope, surface roughness, streamline
matching rate (SMR) and streamline matching error (SME) were
used for the comparisons.

The results show that the stream burning method changed the
terrain surface significantly and produced unacceptable errors for
most of the terrain derivatives. This method performed poorly in
retaining drainage features for coarser resolution generalized
DEMs. Compared with the stream burning method, ANUDEM
performed much better in preserving the key morphological and
hydrological features. However, ANUDEM relies on a surface
fitting approach to generate the terrain surface, and this caused
substantial smoothing and the loss of detail in most of the
experiments. The Compound method consistently delivered the
best results among the three algorithms. This method supple-
mented the maximum z-tolerance algorithm with drainage fea-
ture lines, to construct a drainage-constrained TIN. The results
show that the Compound method was able to retain the terrain
surface and accompanying drainage features better than the
aforementioned approaches across a variety of generalization
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levels. However, all three methods did relatively poorly at high
levels of generalization such as when a 500 m DEM was generated
from a 30 m source DEM.

Future work will focus on two kinds of improvements. The first
is the consideration of other flow routing algorithms given the
numerous studies that have documented that the simple D8
algorithm (used for the work at hand) may not be the best
method to retrieve drainage networks in some fluvial kinds of
landscapes. The second extension will be to explore the effects of
drainage-constrained generalization methods on other morpho-
logical and drainage parameters, such as slope length, curvatures,
stream length and catchment area, which are important for a
variety of practical applications.
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