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a b s t r a c t

Damage assessment (DA) is an important part of the disaster recovery process, as it helps organizations
like the American Red Cross provide assistance and relief to those most affected. Through it, homes are
characterized by the damage they have received using five classes ranging from “Unaffected” to
“Destroyed”. Rapid acquisition of damage assessment data may be achieved through crowdsourcing
platforms where volunteers review images of affected structures. Further, these images can be
geographically enriched through Spatial Video technology, whereby a car with a GPS-enabled camera
captures a video recording of homes as workers on the ground drive through neighborhoods affected by
the disaster. This technology has several key benefits over field surveys, including reduced cost, the
creation of a digital record, and the ability to process the images quickly through crowdsourcing.
However, the quality of such user-generated content must be examined to determine its usefulness. An
online survey was conducted using imagery from a Spatial Video data collection to determine the po-
tential of using these technologies as a crowdsourcing platform. The survey was distributed to DA experts
at the American Red Cross spread across the U.S. as well as individuals connected with CrisisMappers, a
mailing list for people interested in the intersection between crises and geospatial technology. Groups of
inexperienced and experienced users produced statistically similar results, demonstrating that such
content can be trusted and useful for damage assessment. Recommendations are made for the imple-
mentation of future systems, the adoption of related methodologies, and considerations for using the
resulting data.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Damage assessment (DA) is an important part of the disaster
recovery process. It helps agencies and organizations provide
assistance and relief to those most affected. These assessments are
common following large disasters which have caused property
damage to homes, such as earthquakes, tornadoes, and hurricanes.
Most DA efforts will score damage to individual homes with an
ordinal series of classes such as “Unaffected”, “Minor”, and
“Destroyed”. Using these classes, organizations like the American
Red Cross and agencies like FEMA can create an informed action
plan to provide relief to individual clients and to a community as a
whole.
iences Institute, University of
, Los Angeles, CA 90089-0374,
During a Red Cross DA response, Red Cross personnel are sup-
posed to survey homes only from their vehicles on the road. They
are trained to not get out of their cars to perform inspections. From
the road, they determine details of the residence such as the street
address, dwelling type (e.g. single-family, mobile, or apartment)
and number of floors. They also estimate damage on the following
scale: “Affected”, “Minor”, “Major”, and “Destroyed” (or inacces-
sible if road conditions do not permit an assessment). All this in-
formation is recorded on a paper data entry form known as a street
sheet (American Red Cross, 2003).

The integration of digital video technology and geographic
context, also known as Spatial Video, provides value for building
inventories and data collection for disaster management (Montoya,
2003). Spatial Video has further been proposed as a method for DA
with enriched data capture (Curtis & Fagan, 2013). This method
utilizes one or more GPS-enabled cameras mounted to a car that
drives through the neighborhoods affected by the disaster. The
camera captures video that can then be taken back to a computer
workstation and used to do a virtual DA, reviewing the spatially
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enabled imagery to assess damage levels. Aircrafts collecting obli-
que imagery can provide similar content and such data has also
been previously proposed for disaster assessment (Kerle,
Stekelenburg, van den Heuvel, & Gorte, 2005). Different method-
ologies for collecting geographic video may be appropriate
depending on the nature of the disaster and the geographic extent
of its impact. Aircraft are suited for large and inaccessible areas, but
ground-based collection may be more cost-effective and provide
higher resolution results.

Data collected via Spatial Video allows people to monitor
recovery and better understand how a neighborhood recovers
(Curtis, Mills, Kennedy, Fotheringham, & McCarthy, 2007). It pro-
vides a lasting digital record of the damage that was captured at a
scale that currently cannot be matched with available aerial im-
agery. The effort needed to collect the data is also similar to the
effort put in for current surveys being done by the Red Cross. Vol-
unteers already drive around and perform assessments by looking
through their car windows. Adding a video camera to this meth-
odology creates value and produces digital content.

This study explores the potential to use this technology to
distribute disaster assessment work and crowdsource the assess-
ments. The inherent benefit of crowdsourcing is that it can take a
large task that may take a long time and break it into tasks that are
manageable by a large number of individuals working autono-
mously. An online survey was conducted using imagery from a
Spatial Video data collection to determine the potential for the
technology to support crowdsourced damage assessment. The
survey was distributed to American Red Cross DA volunteers and
individuals associated with CrisisMappers (http://www.
crisismappers.net), a mailing list for people interested in the
intersection between crises and geospatial technology, whether
they had experience in DA or not.

Damage assessment, crowdsourcing, and the GeoWeb

Damage Assessment can be performed in a number of ways.
Ground-based surveys are commonly performed by field teams
which assess homes on foot or in vehicles. A more commonmethod
in recent years utilizes remotely sensed imagery to identify tornado
paths (Jedlovec, Nair, & Haines, 2006; Joyce, Belliss, Samsonov,
McNeill, & Glassey, 2009; Yuan, Dickens-Micozzi, & Magsig, 2002)
and perform the DA (Barrington et al., 2011; McCarthy, Farrell,
Curtis, & Fotheringham, 2008).

The American Red Cross performs assessments on the ground by
sending volunteers to drive through the affected neighborhoods.
This effort can employmany people and coordinating it can be both
expensive and time-consuming. In addition, only those few vol-
unteers will be able to offer their perspectives on the assessments.
The resulting data may ultimately provide limited utility to other
partner organizations since there are no universally accepted
standards for damage classification, and different organizations
may assess damage using their own guidelines. Capturing digital
imagery or video allows just a few people to provide a versatile
dataset to many, giving others the option to make their own as-
sessments. The inclusion of GPS data for tracking collection routes
also aids in the logistics of organizing large assessments. The GPS
tracks provide information on what roads were covered and what
roads are left to be explored, reducing the possibility of different
teams duplicating each other’s efforts (Curtis, Mills, Blackburn,
Pine, & Kennedy, 2006).

The utility of damage assessment data is wide-ranging across
multiple disaster types and is relevant wherever post-disaster re-
covery occurs. New technology, tools, and models can help bring
this service to many places with consistent standards and quality.
For example, crowdsourcing as a method for data collection after a
disaster has gained traction in recent years (Gao, Barbier, &
Goolsby, 2011; Goodchild & Glennon, 2010; Roche, Propeck-
Zimmermann, & Mericskay, 2013). Through crowdsourcing, large
numbers of people can contribute to a project through a common
workflow that centralizes and processes their user generated
content.

The four general benefits of crowdsourcing are speed, cost,
quality, and diversity (Alonso, 2012). The first of the two benefits
relate positively to the need for rapid information collection
following a disaster. A short turnaround time for data is preferable
after disasters, as delays in data translate to delays in response
during time-sensitive operations. Low costs help expedite imple-
mentation related to expenditure approvals, and also help in
redirecting funds to direct relief.

The latter two benefits, quality and diversity, relate positively to
the reliability of the information collected. Crowdsourcing as a
strategy achieves quality through quantity, where repeated obser-
vations will converge toward an expected outcome. A diversity of
responses will also help smooth out the effects of outliers and
biased respondents.

The value of crowdsourced data can be enhanced through ge-
ography. The presence of spatial data, software, and tools has also
grown sharply in recent years as the GeoWeb has developed
(Crampton, 2009; Goodchild, 2009; Haklay, Singleton, & Parker,
2008; Hall, Chipeniuk, Feick, Leahy, & Deparday, 2010; Roche
et al., 2013). While the technical growth in this realm is clear, a
parallel cultural growth has also occurred in the democratization of
map-making. These activities are no longer exclusively the purview
of GIS and cartographic professionals, and this shift has been made
possible by Web 2.0 technologies that offer availability, inter-
activity, and customizability of spatial content. The ability to
customize the content to fit various needs is instrumental to the
democratization of spatial information production, resulting in
mapmashups, which blend and combine data from various sources
and formats, to serve any number of needs (Batty, Hudson-Smith,
Milton, & Crooks, 2010; Liu & Palen, 2010). As offspring of Web
2.0, the GeoWeb and crowdsourcing promote and support bound-
less opportunities that go hand-in-hand.

Some crowdsourced damage assessments have utilized
remotely sensed imagery with this new paradigm for displaying
maps over the internet, such as the Virtual Disaster Viewer (VDV)
created by ImageCat following the 2008 earthquake in Wenchuan,
China, the GEO-CAN collaboration for the 2010 earthquake in Haiti,
and the collaboration between GEO-CAN and Tomnod, Inc. to build
a web-based viewer for the 2011 earthquake in Christchurch, New
Zealand (Barrington et al., 2011). These DA solutions support the
participation of multiple users in the assessment process using high
resolution imagery taken with a bird’s eye view of the affected
areas. These images can be rapidly collected and processed, but do
not provide perspective at ground level. These concepts of crowd-
sourcing and the GeoWeb can implemented with Spatial Video,
which allows for fine scale ground level imagery focusing on the
streets that have been damaged (Curtis & Mills, 2012; Curtis, Mills,
McCarthy, Fotheringham, & Fagan, 2009; Mills, Curtis, Kennedy,
Kennedy, & Edwards, 2010).

While such imagery does not provide three-dimensional detail
and there is no true substitute for observing something in person,
pictures can provide a level of detail that can be adequate in
conveying certain aspects of reality. The subject of the photograph
under question is important, however, assessments of aspects such
as scenic beauty have differed between photograph and field-based
judgments (Hull & Stewart, 1992). This does not mean that photo-
graphs cannot be successful surrogates for in-person observation,
as certain judgments such as presence and absence can be reliably
made. Even air quality, which is determined by haze and color
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gradients, has been shown to be identifiable through photographs
(Stewart, Middleton, Downton, & Ely, 1984).

Methods

This study utilized footage obtained from a Spatial Video data
collection effort. The footage was exported to still photographs and
an online survey was built for assessing a selection of these pic-
tures. The results of the survey were then analyzed to address the
usefulness of crowdsourcing for damage assessment.

Photo collection

The tornado event that led to the imagery collection for this
project occurred on Tuesday, April 3, 2012 in the Dallas Fort-Worth
(DFW) area and all tornadoes were rated EF 2 on the Enhanced
Fujita scale. The data collection occurred four days after the event,
utilizing a vehicle mounted with three Contour GPS cameras, one
on each of the rear side windows and one on the front windshield.
Each camera recorded video along with a GPS track synchronized
with the video playback. The rear windows were tinted, but they
were lowered for the collection and did not come between the side
cameras and the homes. Neighborhoods with the highest levels of
reported damage were included in the survey. The collection
finished at 1630 local time, making for 8 h of field collection.

Online survey

Using the Qualtrics survey software, an online survey was pro-
duced that presented 32 images of homes in or near the tornado’s
path. Respondents assigned each picture a damage score. If the
home is not damaged, it would be classed as “Unaffected”. Other-
wise, it was assigned one of four damage classes consistent with the
American Red Cross terminology: “Affected”, “Minor”, “Major”, or
“Destroyed” (Table 1).

The results were stratified by the respondents’ experience with
damage assessment efforts. Those with previous experience were
classified as experts and included both Red Cross volunteers and
others from the CrisisMappers community who had worked on
similar efforts with other organizations. The images were also split
into two groups: ordered images and random images. Ordered
images show homes in a sequence, where it is clear that the houses
being assessed are located next to one another (and thus likely to
introduce proximity bias in assessment). The random images
showed homes that were not adjacent to each other. The 16 ordered
images were presented first, followed by the 16 randomized im-
ages. Six images from the first set of images were repeated in the
second set to test for discrepancies in re-scoring.

Photo selection

The videos were parsed into individual screen captures at a rate
of one frame per second. The images chosen for the survey were
selected to represent all possible damage levels with an emphasis
on the middle classes where the distinction between two succes-
sive classes is more difficult to determine. An “Unaffected” house
and a “Destroyed” house are less similar than houses with “Minor”
and “Major” damage. A street segment from the data collection
with 16 consecutive houses was chosen to represent the set of or-
dered pictures with at least one house in each damage class (ac-
cording to the primary author’s assessment of damages). The
random set of pictures was composed of only “Affected”, “Minor”,
and “Major” damage levels (again, according to the primary au-
thor’s assessment). For each of those levels, two images from the
ordered set were repeated (Table 2).
When selecting the neighborhood for the 16 ordered pictures,
the first step was to find an image of a “Destroyed” home. Then
adjacent homes were examined to determine the surrounding level
of destruction and ensure diversity of damage classes (Fig. 1). The
resulting set included four “Unaffected” homes, which were useful
in setting respondent expectations; knowing that there are “Un-
affected” homes among the pictures would help remove bias from
an incorrect expectation that all homes would be damaged.

Aside from the repeated images in the random picture set,
pictures were selected by first classifying damage for approxi-
mately 100 randomphotos. Once those photos had been placed into
their damage classes, random photos were selected from each to
fulfill the quotas for the random picture set.

Comparing respondent groups and inter-rater reliability (IRR)

After the survey period closed, respondents’ answers were
categorized into groups based on the experience levels of the re-
spondents. Responses by the experienced and inexperienced
groups were compared for each picture using the ManneWhit-
neyeWilcoxon test (MWW), a non-parametric test where the null
hypothesis is that two populations are the same. This test was
chosen over other comparison tests such as a t-test because the
data have non-normal distributions. Another reason for the use of
this test is that the data are ordinal, which is appropriate for an
MWW test.

Krippendorff’s a is a statistical test to determine IRR within an
individual group and was used on each of the survey respondent
groups. It was chosen for its acceptance of multiple observers (i.e.
respondents) and missing data, and was deemed more appropriate
than other tests such as Cohen’s kappa, which is used to gauge IRR
for a pair of respondents. The value of a represents the percentage
of the data that is coded better than it would be if the data were
coded randomly. Suggested guidelines for interpreting a are that
data should be considered reliable when a � 0.800 and can be
considered for drawing tentative conclusions between 0.667 and
0.800. However, interpretations of a values can vary depending on
the datasets used and their implications, and there is more leeway
for accepting lower a values in the social sciences than there is in
the physical sciences (Krippendorff, 2013).

Results

Respondent summary

The survey was taken by a total of 108 valid respondents con-
sisting of 23 members of the general public who were inexperi-
enced in disaster assessment, two who did not reveal any
information on prior DA experience, 13 who did have experience
but were not affiliated with the Red Cross, and 70 Red Cross vol-
unteers and employees (Table 3). Of the Red Cross respondents,
eight did not indicate their positionwithin the Disaster Assessment
activity and the remainder did, with this group comprising of 37
service associates, 13 supervisors, and 12 managers.

For most of the following analyses, respondents were arranged
into several non-exclusive groups, the largest being Group A (all
108 viable responses). Two more groups e Group I (the 23 inex-
perienced respondents) and Group E-All (the 83 experienced) e

were compared with one another. Other groups include Group E-M
(the 12 managers), Group E-S (the 13 supervisors), Group E-SA (the
37 service associates), and Group E-O (the 13 with experience
outside the Red Cross). Group U (the two who did not indicate any
experience) and Group E-U (the eight with Red Cross experience
but did not provide DA experience information) were used only in
analyses that ignored experience level.



Table 2
Number of pictures used in the online survey belonging to different damage scores
as determined by the primary author.

Estimated damage score Ordered set (16 total) Random set (16 total)

(1) Unaffected 4 0
(2) Affected 3 5 (1 repeat, 3 new)
(3) Minor 6 6 (1 repeat, 4 new)
(4) Major 2 5 (1 repeat, 3 new)
(5) Destroyed 1 0

Table 1
Four damage assessment classes as defined on street sheets (American Red Cross, 2003). These class definitions were reproduced in the damage survey, including a fifth class,
“Unaffected”.

Class Picture example Description

Affected Some shingles and/or siding missing
Debris against or around dwelling
Structure damage considered to be nuisance
Dwelling is livable without repairs

Minor Minor structural damage
Damage to small sections of roof
Numerous broken windows
Large portions of roofing material and/or siding missing
Penetration damage where it is believed no structural damage has occurred

Major Large portions of roof missing or debris penetration
One or two walls missing

Destroyed Total collapse
Shifted on foundation
Not economically feasible to repair
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Damage scores

The response data for damage class were ordinal and were
coded for analysis. Damage classes were assigned numeric codes
from 1 (Unaffected) to 5 (Destroyed). Modes and medians were
calculated as measures of central tendency. In most cases, mode
and median values were the same, although the results presented
here focus on modes since this method is not susceptible to
skewing by a few outliers.



Fig. 1. Map of the neighborhood used for the ordered picture set.

Table 4
Percentages of scores for each picture as assigned by Group A (n ¼ 108). Cases of “no
response” are ignored for these calculations. Bold and shaded values designate the
modewhile italicized scores designate themedian. An asterisk (*) indicates a picture
where the median and mode were not the same.

Score Pic 1 Pic 2* Pic 3 Pic 4 Pic 5 Pic 6 Pic 7 Pic 8

1 12 8 6 90 81 94
2 51 8 1 56 38 8 15 3
3 36 45 9 34 50 2 4 3
4 1 46 25 1 6
5 2 65

Score Pic 9 Pic 10 Pic 11 Pic 12 Pic 13* Pic 14 Pic 15 Pic 16

1 88 17 4 21
2 13 57 43 24 10 10
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For Group A, only three pictures in 32 had different values for
medians and modes (Table 4). In only one picture did the range of
values received span all five damage classes (Picture 29). The range
spanned four classes in 16 cases, three classes in 10 cases, and two
classes in five cases. Of those five cases, four occurred between the
highest two damage classes and one occurred between the lowest
two damage classes. This makes sense given that pictures of “Un-
affected” and “Destroyed” homes aremore likely to have one or two
scores due to more visibly clear damage states. However, range size
did not necessarily correlate with the percentage value of the mode
score. Of the four pictures where the mode consisted of over 80% of
responses (Pictures 6e9 and 32), three had ranges with three
damage classes (Pictures 6e8).

Agreement in damage scores was similar between the inexpe-
rienced and experienced groups. The mode of damage scores for
each picture is shown in Fig. 2 in three series: as scored by all re-
spondents, by the experienced respondents only, and by the inex-
perienced respondents only. Themode of the experienced response
disagreed with the mode of the inexperienced response in three
cases.

Group E-All was expected to demonstrate more precision in its
scoring as a group than Group I given its prior experience with DA,
but this trend was not observed. Precision was measured by
comparing the two groups in terms of how frequently the mode
score was chosen for each picture. For Picture 8, for example, 96% of
Group E-All chose the mode score whereas only 86% of Group I
Table 3
Number of respondents organized into groups and subgroups.

Group description Group symbol No. of respondents

Red Cross managers E-M 12
Red Cross supervisors E-S 13
Red Cross service associates E-SA 37
Red Cross, unknown position E-U 8
Other experience E-O 13

Total experienced E-All 83
Unknown U 2
Inexperienced I 23

All respondents A 108
chose it, suggesting greater precision in terms of scoring by Group
E-All (Table 5). The two groups were within 5% points of each other
in 11 cases. Of the remaining 21 cases, Group E-All chose its mode
score more frequently than Group I 11 times while the reverse was
true in 10 cases. In this sense there is no compelling evidence that
Group E-All demonstrated any more certainty than Group I. The
same conclusion would be reached if the range size of damage
classes were the measure of precision. Between the two groups, the
pictures’ range sizes were nearly identical (six pictures where
Group E-All’s range was 1 smaller than Group I, nine where the
reverse was true, and 17 where the range sizes were the same).
3 26 51 52 42 58 1
4 2 4 47 30 72 23
5 1 2 27 77

Score Pic 17 Pic 18 Pic 19 Pic 20 Pic 21 Pic 22 Pic 23 Pic 24

1 13 9 4 1
2 16 32 60 49 6 23
3 64 1 58 26 42 66 56
4 17 20 43 10 1 24 20
5 83 56

Score Pic 25* Pic 26 Pic 27 Pic 28 Pic 29 Pic 30 Pic 31 Pic 32

1 17 3 2 3
2 36 8 59 17 39
3 46 1 63 26 65 50
4 1 57 27 22 4 16 8 80
5 42 2 78 8 20



Fig. 2. Mode of damage scores for the ordered (a) and random picture sets (b) as scored by Groups A, E-All, and I.
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The MWW statistical test was used to test whether or not Group
E-All’s scores differed from Group I’s scores. This test invokes the
null hypothesis that two populations are the same while the
alternative hypothesis is that they are different. The test results
show that the null hypothesis could only be rejected in the case of
Picture 19 (Table 6). The home in this image was debated by the
respondents as either having sustained “Major” damage or having
been completely “Destroyed”.
Table 5
Percentages of scores for each picture as assigned by Group E-All (left; n ¼ 83) and Group
shaded values designate the mode while italics designate the median. An asterisk (*) ind

Group E-All

P01 P02* P03 P04 P05 P06 P07 P08

S1 10 9 6 90 82 96
S2 52 7 1 54 38 10 16 3
S3 38 43 10 37 49 2 1
S4 48 25 6
S5 2 64

P09 P10 P11* P12 P13 P14 P15 P16

S1 87 18 5 20
S2 13 55 46 27 9 10
S3 27 47 50 48 60
S4 1 3 42 29 73 20
S5 1 1 28 80

P17 P18 P19 P20 P21 P22 P23 P24

S1 13 9 3
S2 15 37 63 49 6 22
S3 66 1 53 24 42 67 61
S4 15 19 37 11 24 18
S5 85 62

P25* P26 P27 P28 P29 P30 P31 P32

S1 18 4 1 3
S2 35 10 62 16 40
S3 45 1 63 24 68 51
S4 1 55 26 22 4 15 6 81
S5 43 1 78 6 19
While median damage scores are generally consistent between
these two groups just as the mode is, it should be noted that some
scores by a respondent groupwere sometimes split between two or
more classes. In one case, the counts of damage classes chosenwere
evenly split across three damage classes. Group E-O gave Picture 21
(shown as the “Affected” example in Table 1) an equal number of
damage scores across the “Unaffected”, “Affected”, and “Minor”
damage classes. Twelve people were evenly split between the three
I (right; n ¼ 23). Cases of “no response” are ignored for these calculations. Bold and
icates a picture where the median and mode were not the same.

Group I

P01 P02 P03 P04 P05 P06 P07 P08

19 6 5 90 78 86
43 9 61 33 11 5
33 55 5 28 57 10 11 9
5 36 27 6 5

68

P09 P10 P11 P12 P13 P14 P15 P16

89 14 20
11 62 32 15 14 9

24 64 60 18 55 5
5 5 68 32 68 32

5 27 68

P17 P18 P19 P20 P21 P22 P23 P24

14 10 9 5
14 14 48 48 5 24
59 76 33 43 64 43

27 27 68 10 5 23 29
73 32

P25* P26 P27 P28 P29 P30 P31 P32

15 5 5
40 52 23 36
45 62 33 55 45

64 33 23 5 18 14 73
36 5 77 10 27



Table 6
The p-values from MWW tests between Group E-All and Group I’s damage scores.
Only Picture 19, in bold, had a p-value within a 95% confidence limit.

Picture p-value Picture p-value Picture p-value Picture p-value

P01 0.81 P09 0.83 P17 0.17 P25 1.00
P02 0.25 P10 1.00 P18 0.48 P26 0.61
P03 0.59 P11 0.07 P19 0.02 P27 0.15
P04 0.95 P12 0.45 P20 0.12 P28 0.92
P05 0.66 P13 0.13 P21 0.32 P29 0.20
P06 0.97 P14 0.57 P22 0.99 P30 0.61
P07 0.57 P15 0.75 P23 0.64 P31 0.70
P08 0.11 P16 0.26 P24 0.90 P32 0.39
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scores while one person did not score it. Interestingly, this picture is
a repeat of Picture 10. When it was scored the first time, five people
in the group called it “Unaffected”, three people called it “Affected”,
and four called it “Minor” damage. As there appears to be no
apparent damage to the house other than debris in the front yard
and a tarp on the roof, this disagreement is likely due to assessors’
interpretations of what a tarp meant for damage scoring.

In most cases, the two most common scores for a picture were
sequential (i.e. the most common scores for a single picture were 1
and 2 as opposed to 1 and 3). This indicates that split decisions
tended to be between one damage class and the next highest or
lowest class. The only cases where the two most common damage
scores were not adjacent were Group I’s assessment of Picture 12
(though the 2nd and 3rd largest counts for damage scores were
only one respondent apart) and Group E-O’s assessments of Pic-
tures 5, 10, 12, 22, and 25. It should be noted that Group E-O is the
groupwith the least amount of group cohesion, as it is composed of
a variety of experienced damage assessors, but with no specified
common assessment framework such as the one used by the
American Red Cross.

The Krippendorff’s a tests were initially run for Groups A, E-All,
E-M, E-S, E-SA, E-O, and I three times each, once with all 32 pic-
tures as subjects, once with only the ordered set of 16 pictures,
and once with the random set of 16 pictures (Table 7). The results
indicate that there is general inter-rater agreement in the data.
Using Krippendorff’s (2013) guidelines, the data for all groups and
subject sets can be used at least for drawing tentative conclusions,
with the exception of the inexperienced group rating the random
Table 7
Krippendorff’s a values for IRR and the damage scores assigned by different respondent gr
tentative conclusions, and red values should not be accepted as indicators of agreement
picture set where a ¼ 0.639. Each group of experienced assessors
demonstrated more agreement over all three sets than the inex-
perienced group, with the American Red Cross DA supervisors
showing the most agreement. Each group also demonstrated more
agreement in the set of ordered pictures than in the set of random
pictures.

Each group observed the highest a values for the 16 ordered
pictures rather than the 16 random pictures. At first, the likely
explanation for this difference in IRR is that there actually is some
bias when the pictures are of houses near each other, leading to
more convergence toward agreement. However, this result is con-
trary to the hypothesis that responses begin to converge after re-
spondents get practice with assessing pictures; in this case, IRR
should be higher in the later picture set. The more likely explana-
tion for the higher a values is that the ordered picture set contained
several homes that were completely unaffected and were easy to
evaluate. The random picture set only had images of damaged
homes. A fourth run of Krippendorff’s a was conducted on the or-
dered picture set data with the four unaffected homes removed,
with the results indicating smaller a values (Table 7).

Repeated images

The repeated images were inserted into the survey to explore
whether or not respondents could reliably repeat their ratings.
Exploring consistency in rating is independent of a group’s ability
to agree on its ratings. In this sense, if a rater looked at a picture of a
4 and assigned it a 2 the first time and then a 4 the second time, that
is a worse result for consistency than assigning it incorrectly as a 2
both times.

The mode damage scores were the same within each pair of
repeated images. While these results at a group level may suggest
that the group consistently rated the pairs of pictures, an exami-
nation of how individuals did at repeatability was showed less
encouraging results. More often than not, a picture that was
repeated within the survey was given the same score, but there
were still many who changed their minds the second time around.
Of the people who changed their minds, there was no particular
trend inwhether that change had a specific direction. In most cases,
that change was only up or down by one damage class, and few
cases showed a change in two damage classes or more.
oups tomultiple subject sets. Green values are reliable, black values are acceptable for
.



E. Lue et al. / Applied Geography 52 (2014) 46e54 53
Contingency tables were calculated for each repeated picture,
with the score assigned the first time recorded as rows and the
second score recorded as columns (Fig. 3). In each contingency
table, the diagonal series of boxes from (1, 1) to (5, 5) represent
repeat damage scores. Boxes above the diagonal represent pictures
that were assessed the second time as being more damaged. Boxes
below the diagonal represent pictures that were assessed the sec-
ond time as being less damaged. The repeat ratings ranged from
60% (P05 and P31) to 84% (P16 and P28) and the unequal sums
between tables are due to missing data.

Respondents’ comments

The survey provided an option to include comments on the
survey itself or on the images that were used. The majority of
feedback given in this section regarded the concept of a 3-point
viewmethod of damage assessment. A total of 34 people (41% of all
experienced respondents) suggested that multiple points of view
were needed for a single house in order to determine damage: one
point of view for the front of the house and two for each of the
adjacent sides. Nearly half of the experienced assessors mentioned
it, and there were surely some others who thought it but just did
not leave a comment. The inclusion of side pictures was considered
during the survey design, but these pictures were intentionally left
out to simplify the questions andmanage the length of time needed
by respondents to provide answers. In hindsight, the inclusion of
these additional views may have reduced the number of re-
spondents willing to sit through the survey, but it would have likely
added confidence to peoples’ assessments.

In a similar vein, 13 respondents commented that they felt they
needed to see more to make better assessments. Suggestions
included the option to zoom into a picture (one respondent), see
images from a higher vantage point (e.g. a camera tower mounted
to a car; one respondent), or employ image processing to remove
shadows (four respondents). Five respondents recognized the
importance of seeing the roof, andwould have liked an aerial image
Fig. 3. Contingency tables for each pair of r
to complement the street-level image. Two respondents com-
mented that scores were difficult to determine where blue tarps
concealed roof damage, but this limitation would also be observed
by someone at the damage site since most levels of damage
assessment would disallow the removal of protective tarps. Only
one respondent observed that these pictures did not give a person
the same amount of detail that he or she would get in person, but
no explicit explanation for that observation was provided.

Discussion and conclusions

One of the most promising features of crowdsourcing is the
ability to collect accurate information by aggregating responses
from a large number of people. This study showed that similar
results were achieved using inexperienced and experienced dam-
age assessors. This result does not suggest that experience adds
little value to the assessments, but rather that inexperienced as-
sessors can be tapped for this work if needed and the content they
generate can be trusted as tentative or preliminary results.

Even the most experienced experts can disagree on how a house
should be scored, especially if a more refined damage scheme with
more classes is utilized. For this reason, no analysis was performed
to learn how “right” or “wrong” any of the groups were in their
assessments; hence, there was no answer key or baseline to
compare these responses with. However, an organization that
participates in damage classification that wishes to employ a
similar crowdsourcing platform may benefit from creating a tuto-
rial showing visual examples of the damage classes used. Such a
tutorial would surely improve IRR.

Similarly, such a tutorial could be used for disaster assessment
training and testing. The results of this study do not imply that field
crews are not necessary. Rather, the results emphasize that such
rapid information collection can be deemed tentatively reliable. A
thorough damage assessment might employ a number of tech-
niques, such as field crews who assess houses on the ground while
capturing imagery and video which can be referenced at a later
epeated pictures as rated by Group A.
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time. As mentioned, aerial imagery can be used for damage clas-
sification and integrated into a multi-method approach to data
collection, providing different views of affected structures.

Performing similar surveys on images collected from other
tornado events would further refine the definitions of each class.
Images of houses affected by more extreme tornadoes may show a
greater variety of damage. Such data has been collected for the EF4
2011 TuscaloosaeBirmingham tornado, EF5 2011 Joplin tornado,
and the EF5 2013 Moore tornado. Expanding this survey to include
a larger set of images would improve confidence in the de-
terminations of damage scores. Inclusion of images from a variety
of events would help in exploring whether or not a specific event,
disaster type, or geography that may influence scoring.

Further research in validating user generated content can
employ datasets where houses have already been assessed in the
field. A crowdsourcing effort can then be performed to compare
computer-based assessments to the field assessments. Of the re-
spondents in this study who had prior DA experience, 30% felt that
their assessments would have differed if they had been in the field.
Studies utilizing existing field assessments can further explore such
claims.
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