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a b s t r a c t

Accurate pesticide exposure estimation is integral to epidemiologic studies elucidating the role of pes-
ticides in human health. Humans can be exposed to pesticides via residential proximity to agricultural
pesticide applications (drift). We present an improved geographic information system (GIS) and remote
sensing method, the Landsat method, to estimate agricultural pesticide exposure through matching
pesticide applications to crops classified from temporally concurrent Landsat satellite remote sensing
images in California. The image classification method utilizes Normalized Difference Vegetation Index
(NDVI) values in a combined maximum likelihood classification and per-field (using segments) approach.
Pesticide exposure is estimated according to pesticide-treated crop fields intersecting 500 m buffers
around geocoded locations (e.g., residences) in a GIS. Study results demonstrate that the Landsat method
can improve GIS-based pesticide exposure estimation by matching more pesticide applications to crops
(especially temporary crops) classified using temporally concurrent Landsat images compared to the
standard method that relies on infrequently updated land use survey (LUS) crop data. The Landsat
method can be used in epidemiologic studies to reconstruct past individual-level exposure to specific
pesticides according to where individuals are located.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

Pesticides, chemicals designed to treat pests such as insects,
have been associated with adverse human health outcomes such
as cancers (Alavanja, Hoppin, & Kamel, 2004; Blair, Ritz,
Wesseling, & Beane Freeman, 2015). One source through which
pesticide exposure may impact human health is via residential
CCM, compressed county mosaic;
ospheric transmittance; DNR, Dep
83, North American Datum 1983; N
ion Index; NIR, near-infrared; NPS,
atellite Pour l'Observation de la Ter
d States Geological Survey.
Division of Network Medicine, Dep
2515.
), jpwilson@dornsife.usc.edu (J.P. W
, eot1@pitt.edu (E.O. Talbott), chan
proximity to agricultural pesticide applications (Rull & Ritz, 2003;
Ward et al., 2000). Applied pesticides may drift through the air
and the ground and through post-application volatilization. Large-
scale pesticide drift incidents frequently occur in agricultural areas
in California (CA), United States (US), impacting residents and field
workers and resulting in acute symptoms such as vomiting and
impaired breathing (Harrison, 2006). In California, upwards of 90%
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of registered pesticide products are prone to drift. Gunier et al.
(2011) demonstrated that pesticides measured in carpet dust
from 89 residences in California were significantly correlated with
residential proximity to agricultural pesticide applications quan-
tified using a geographic information system (GIS) (Spearman
correlation coefficients 0.23 to 0.50; p<0.05). Humans are subse-
quently affected by pesticides through dermal contact and inges-
tion, especially as pesticides are less likely to degrade within
houses (Gunier, Harnly, Reynolds, Hertz, & Von Behren, 2001).

Elucidating the exact role pesticide exposure may play in the
risk of developing adverse health outcomes is impacted by the
methods used to quantify exposure. GIS metrics can combine
multiple data sources to reconstruct historical exposure to specific
pesticides (Franklin&Worgan, 2005). The California Department of
Pesticide Regulation (CDPR) has collected Pesticide Use Report
(PUR) data pertaining to agricultural use pesticide applications
since 1974, including pounds (1 pound represents 0.45 kg) of pes-
ticides used to treat specified crop types on specified dates within
Public Land Survey System (PLSS) sections (CDPR, 2014). However,
PUR data alone cannot be used to match pesticide applications to
specific geographic locations at a scale finer than the 2.59 km2 (1
mi2) PLSS section level. This limitation has motivated attempts to
combine PURs with land use data, notably the California Depart-
ment of Water Resources (CDWR) land use surveys (LUS's). Rull and
Ritz (2003) developed the standard validated GIS method of esti-
mating agricultural pesticide exposure in California via a three-tier
methodology that assigns PUR pounds of applied pesticides to LUS
crop fields (Rull, Ritz, & Shaw, 2006a, 2006b). The notion of “tiers”
refers to the level of certainty with which a PUR pesticide appli-
cation can be assigned to a particular LUS crop field. Combining
PURs with a LUS enables pesticide application rate calculations at
geographic scales finer than the PLSS level. However, CDWR LUS's
are infrequently conducted on a county basis once every seven to 10
years, during which time significant land use changes can occur
(Nuckols et al., 2007).

Although vector data have typically dominated this research,
raster data provide a valuable way to incorporate temporally con-
current land use information in pesticide exposure estimation.
Ward et al. (2000) pioneered the integration of Landsat remote
sensing, which has continuously captured satellite imagery of the
Earth since 1972 (USGS, 2014), in estimating pesticide exposure.
Supervised classification of a Landsat image of Nebraska, US from
1984 was implemented to classify agricultural land cover types,
which were subsequently assigned crop-specific pesticide use
probabilities. Wan (2015) developed a GIS and remote sensing
method to estimate population-level exposure using Nebraska land
use data (classified from Landsat images), United States Geological
Survey (USGS) county-level pesticide data, and crop-specific
pesticide usage from farmer surveys. Population density grid cells
were assigned pesticide exposure values according to downscaled
pesticide data using 1,000 m radius buffers around cell centroids.
Maxwell, Airola, and Nuckols (2010) demonstrated how Landsat
imagery of California could be used to downscale the identification
of PUR pesticide-treated crop fields below the LUS level (minimum
mapping unit 0.008 km2) (Nuckols et al., 2007). Normalized Dif-
ference Vegetation Index (NDVI) values, a measure of vegetative
density, were used to classify imagery into crop fields via a mini-
mum distance method, and when used in conjunction with PLSS
sections, can identify probable crops treated with pesticides
(Maxwell, 2011).

However, minimum distance classification is not widely used in
practice as it cannot take into account the spectral variability pre-
sent within land use classes (Campbell&Wynne, 2011). Alternative
approaches include implementing per-pixel maximum likelihood
classification (MLC) using NDVI values (De Wit & Clevers, 2004;
Guerschman, Paruelo, Bella, Giallorenzi, & Pacin, 2003) and/or
per-field classification, which is useful in addressing within-field
spectral heterogeneity (Lu & Weng, 2007). For example, Turker
and Ozdarici (2011) implemented per-field classification, where
ML-classified pixels of SPOT, IKONOS, and QuickBird imagery of
Turkey in 2004 were used to classify vector fields according to the
most frequently occurring land use class pixel.

This study demonstrates the use of an improved GIS and remote
sensing method, the Landsat method, to estimate agricultural
pesticide exposure in a year without a concurrent standard LUS
crop field dataset. The Landsat method matches PUR pesticide
application data to concurrent Landsat images that have been
classified into crops via an MLC and per-field classification
approach. Pesticide-treated crop fields intersecting 500 m buffers
around geocoded locations are used to estimate pesticide exposure.
Our first research objective was to execute an accuracy assessment
comparing classified Landsat images in 1990 to the 1990 LUS gold
standard (ground truth). As part of this first objective, we deter-
mined the accuracy of 1990 agricultural pesticide exposure esti-
mates using classified Landsat images from 1990 vs. the 1990 LUS.
Our second research objective was to evaluate the crop specificity
of 1985 pesticide applications matched to classified Landsat im-
ages, a demonstration of the Landsat method's utility. As part of this
second objective, we compared pesticide exposure estimates
derived from 1985 pesticide application data matched to classified
Landsat images from 1985 vs. the 1990 LUS.
Methods

Study area and data sources

Kern County, CA, US is 21,061.58 km2 in area and is one of 19
counties in the agriculturally intensive Central Valley (Fig.1) (USDA,
2003). Agricultural croplands are predominantly found in the
central and northwestern portions of the county. From 1982 to
1992, the majority of Kern County's farm area (4,058e3,900 km2)
was associated with harvested cropland (76.6e86.7%), which was
consistently dominated by cotton (34.6e36.9%) (USDA, 2014).

The CDPR PURs include California agricultural pesticide appli-
cation data from 1974 to present (full use reporting started in 1990)
(CDPR, 2014). PUR data include the name, pounds (1 pound rep-
resents 0.45 kg), date, crop, and PLSS section associated with re-
ported pesticide applications. The PLSS divides portions of the US
into 2.59 km2 (1mi2) sections, each identified by a county, principal
meridian, township, range, and section (National Atlas, 2014). USGS
andNational Aeronautics and Space Administration (NASA) Landsat
satellites have collected Earth imagery since 1972 (USGS, 2014). The
Thematic Mapper (TM) sensor onboard Landsat 4 and 5 (used in
this analysis) captured seven spectral bands with at least 30 m
spatial resolution. Each Landsat scene, defined by a PatheRow
designation, spans 185 km and is captured every 16 days. Bands 3
(red; 0.63e0.69 mm) and 4 (near-infrared; 0.76e0.90 mm) were
used in this analysis to calculate NDVI values (Maxwell, Airola, et al.,
2010; Maxwell, Meliker, & Goovaerts, 2010), which harness infor-
mation from wavelengths of electromagnetic radiation absorbed
and reflected by green plants and their changes throughout the
growing season (USGS, 2011). NDVI values range from �1 (no or
sparse vegetation) to 1 (dense vegetation). The CDWR conducts
LUS's of agricultural lands to monitor land use changes in California
on a county basis focusing on over 70 crop types (CDWR, 2014).
Each LUS dataset is updated every seven to 10 years. Residential
parcels were selected from the 2012 Kern County Assessor file via
use codes (e.g., 0100, single family residence) (Kern County
Assessor, 2012). All administrative boundaries were mapped



Fig. 1. Kern County, CA, US study area. A National Agriculture Imagery Program (NAIP) compressed county mosaic (CCM) of Kern County from August 2012 is shown on the left
(USDA Farm Service Agency Aerial Photography Field Office, 2012). Kern County within California's Central Valley agricultural region is shown on the right.
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using United States Census Bureau TIGER/Line© files (U.S. Census
Bureau, 2014).
Implementing the Landsat method

The ultimate goal of the Landsat method is to estimate pesticide
exposure experienced by individuals according to the pesticide-
treated crop fields near their residences. The Landsat method re-
quires four pieces of information: (1) Landsat satellite images, (2)
ground truth, (3) pesticide application data, and (4) geocoded lo-
cations (e.g., residences). Landsat images of Kern County, a LUS
ground truth, California PUR pesticide data, and residential parcels
were used for this study. The Landsat method is comprised of three
main steps: (1) classifyingmonthly Landsat NDVI images into crops,
(2) matching pesticide applications to the classified Landsat crops,
and (3) estimating pesticide exposure according to pesticide-
treated Landsat crops intersecting 500 m (radius) buffers around
geocoded locations in a GIS. Five hundred meters corresponds to a
relevant distance within which to estimate human pesticide
exposure previously used in epidemiologic studies (Rull & Ritz,
2003; Rull et al., 2006a). Aerial pesticide applications can drift
between 500 and 1,000 m from where they were applied (Ward
et al., 2000).

NDVI images, which show vegetative density across the study
area, are created using Landsat images and classified into crops
using a supervised, hard, per-pixel MLC and per-field (using seg-
ments) classification approach that assigns one particular crop type
to each segment for the time period of analysis. A monthly time
series of cloud-free images is used to enhance land use discrimi-
nation. In order to classify the NDVI images, training data must be
created, which are comprised of monthly NDVI images and a
ground truth.When implementing this method in practice, training
data should be created (1) using data in the geographic study area
of interest and (2) in a year close in time to the year pesticide
exposure is to be estimated to minimize spatiotemporal changes/
differences in land uses, growing practices, Landsat sensors, and
NDVI values. Furthermore, it is very important to perform an ac-
curacy assessment in the year used to create training data to
examine land use classification accuracies. In California, PUR
pesticide applications from any year between 1974 to present day
can be matched to Landsat images classified into crops from that
same year.
Landsat image and LUS preprocessing

The year of 1990 was selected for the accuracy assessment as
there was an available Kern County LUS ground truth and Landsat
images. The year of 1985 was selected to demonstrate pesticide
exposure estimation as a concurrent LUS is not available and it was
the first year moving backward from 1990 that had available cloud-
free images from January to October paralleling the monthly im-
ages used to create the 1990 training data. A time series of Landsat 4
and 5 TM monthly images captured between January and October
1990 (no available November and December images) and January
and October 1985 was downloaded (Supplemental Tables S1 and
S2). Images from Paths 41 and 42 and Rows 35 and 36 were
requested, which cover the geographic extent of Kern County
(Fig. 2) (USGS, 2013). Portions of images with excessive cloud cover
were excluded. Portions of the February 1985 image missing Path
42 (majority of Kern County agricultural fields) were imputed with
the average of the January and March 1985 images (Martinuzzi,
Gould, & Ramos Gonz�alez, 2007). Using IDRISI Selva (Clark Labs,
2014), images for the red (R) and near-infrared (NIR) bands (used
to calculate NDVI) were corrected to at-sensor reflectance
(Chander, Markham, & Helder, 2009). Atmospheric correction was
implemented via the Chavez cosine estimation of atmospheric
transmittance (COST) model (Chavez, 1996; Song, Woodcock, Seto,
Lenney, & Macomber, 2001). PatheRow images were mosaicked
and negative reflectance values were recoded to 0 (Yale Center for
Earth Observation, 2013). A median spatial filter (3x3 kernel) was
applied to each mosaicked image (Vassiliou, Boulianne, & Blais,
1988). NDVI values were calculated using the following equation:
NIR-R/(NIRþR). NDVI images from 1990 were cropped to what is
referred to as the 1990 NDVI signatures extent in Fig. 2, a region
defined by images unaffected by clouds and/or shadows and within
the 1990 Kern County LUS surveyed area. NDVI images from 1985
were cropped to what is referred to as the 1985 imagery extent in
Fig. 2, a cloud- and shadow-free area within the 1990 Kern County
LUS extent. NDVI images were re-projected to the California Teale
Albers (NAD83 datum; meter) coordinate system (30 m spatial
resolution; nearest neighbor resampling to not alter pixels).

Creation of training data and classification of Landsat images

Polygons of single-use (e.g., excluding double-cropped), repre-
senting classified areas (e.g., excluding outside study area [Z]), and



Fig. 2. Landsat Path-Rows intersecting Kern County, CA and geographic extent of NDVI
training data and classification data. Landsat scenes were requested for these four
PatheRow combinations. NDVI signatures for land use classes derived from images
within the 1990 NDVI signatures extent (pink region) were used for the accuracy
assessment in 1990 and as training data for MLC of 1985 images within the 1985
imagery extent (red region). For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.
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within the 1990 NDVI signatures extent were selected from the
1990 Kern County LUS. A negative buffer (�30 m; spatial resolution
of Landsat images) was created around each selected LUS polygon
to exclude potential mixed pixels (CDWR, 2009). After collapsing
urban LUS polygons into a single category, LUS polygons with valid
geometries were intersectedwith the NDVI images from 1990. Land
uses represented by fewer than 100 pixels in each month in 1990
were excluded from consideration for training data in order to
include representative classes (Richards, 2013), resulting in 57
distinct land use classes in the training data.

Stratified random sampling (SRS) selected 60% of the buffered
polygons from the 1990 LUSwithin the 1990NDVI signatures extent
tobeusedas trainingdata in theaccuracyassessment (CDWR,2009).
Stratawere definedby the landuse classes. The remaining 40%of the
1990 NDVI signatures extent, referred to as the 40% classification
extent, was segmented and classified using MLC and per-field clas-
sification. Using ArcGIS 10.1 (Esri, 2014), MLC and the sample option
assigned apriori probabilities to landuse classes inproportion to the
number of cells represented in the training data (Mueller-Warrant
et al., 2011). Using IDRISI Selva, segmentation was performed on
the monthly 1990 NDVI images within the 40% classification extent
using the following parameters: window of 3, tolerance of 0.01,
weight mean factor of 0.5, and weight variance factor of 0.5. Using
theML-classifiedpixels, per-field classification (using the segments)
was implemented based on the modal class or a majority rule
(Turker & Ozdarici, 2011; Van Niel & McVicar, 2004). For the 1985
analysis, all training data from the 1990 NDVI signatures extent, not
restricted the 60% SRS, were used to classify themonthly 1985 NDVI
images using MLC and per-field classification.

Pesticide exposure estimation

The three-tier method (Rull & Ritz, 2003) was implemented to
estimate pesticide application rates in 1990 and 1985 by matching
PUR pesticide applications to either classified 1990 or 1985 Landsat
images (referred to as the Landsat method) or the 1990 Kern
County LUS (referred to as the LUS method; LUS conducted closest
in time to the 1985 PUR data). PUR datawere processed using CDPR
logic checks such as duplicate removal (CDPR, 2014). Outlier
application rates in 1990 were defined using CDPR-created flags
(CDPR, 2014) and in 1985 as pesticide application rates>22,417 kg/
km2 (>112,085 kg/km2 if fumigant) or pesticide application rates
greater than 50 times the median rate for all uses of a given
pesticide product, crop, unit type, and record type. Outliers were
replaced with the statewide median rate for the pesticide active
ingredient (AI) in that year. Pounds of AI were recalculated using
the number of treated acres (Rull & Ritz, 2003). Organophosphates
were identified using agricultural references (AgroPages, 2014;
Alavanja et al., 2004; Dich, Zahm, Hanberg, & Adami, 1997;
Greene & Pohanish, 2005; Gunier et al., 2001; Rull et al., 2009,
2006a; Wood, 2010). A crosswalk between PUR crop codes and
CDWR LUS crop codes was created to facilitate data linkage.

Landsat method crop fields used to match to PUR pesticide ap-
plications were derived from segments classified as agricultural use
(e.g., grain) that were spatially joined to the 2,337 PLSS sections
intersecting the 40% classification extent (accuracy assessment) or
the 2,491 PLSS sections within the 1985 imagery extent. Segments
were dissolved according to crop type and section, the geographic
level of reporting of the PUR database. LUS method crop fields used
to match to PURs were derived from agricultural use LUS polygons
selected from the 40% classification extent or within the 1985 im-
agery extent, spatially joined to sections, and dissolved according to
crop type and section. The three-tier method hierarchically
matched pesticide applications to one of three tiers. Tier 1: Pesti-
cides were matched to a crop field according to crop type and
section. Tier 2: Pesticides were matched to all other crop fields in a
section. Tier 3: Pesticides were matched to the entire section. The
LUS method implemented in this study did not collapse non-
permanent crop fields into a single category to facilitate the ex-
amination of specific crop types. Using the tier-matched organo-
phosphates, pesticide application rates (kg/km2) were calculated
for sampled residential parcels separately using the Landsat and
LUS methods. SRS selected at most three residential parcel cen-
troids from each of the sections (strata) within the 40% classifica-
tion extent or the 1985 imagery extent, and 500 m (radius) buffers
were created around the centroids of sampled residential parcels.
Area estimates were derived from Landsat, LUS, and section data.
Pesticide application rates were weighted by the proportion of
pesticide-treated crop fields and/or sections intersecting the buffer.

Statistical analysis and error matrices

For the accuracy assessment, classified Landsat segments and
the LUS were intersected and compared by segment and total area
using site-specific error matrices. Agreement, kappa and 95% con-
fidence intervals (CIs), producer's accuracy, user's accuracy, omis-
sion error, and commission error were calculated according to
CDWR land use (i.e., specific crop), CDWR broad land use group
(e.g., field crops), and phenological group. Phenological groups
were determined using the SAS Proc Cluster centroid method,
which grouped together land use classes based on the squared
Euclidean distance between their centroids (mean NDVI value for
each land use class for each month) (Guerschman et al., 2003;
Simoniello, Carone, Lanfredi, Macchiato, & Cuomo, 2004; Suzuki,
Nomaki, & Yasunari, 2001). Bowker's test of symmetry for paired
data compared the proportion of tier 1, tier 2, and tier 3 matches
when using the Landsat vs. the LUS method. McNemar's tests
compared the proportion of tier 1 vs. tier 2 and 3 matches, and tier
1 and 2 vs. tier 3 matches, when using the Landsat vs. LUS method,
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as well as the proportion of tier 1 vs. tier 2 and 3 matches by crop
type according to each method. Wilcoxon signed-rank tests
compared pesticide application rates estimated using eachmethod,
and Spearman rank coefficients quantified the correlation between
rates. Weighted kappa coefficients quantified the agreement in
pesticide exposure categorizations according to each method. An-
alyses were conducted in 2014 using SAS version 9.4 (SAS Institute,
Inc., Cary, North Carolina).

Results

Accuracy assessment in 1990: land use classification and pesticide
exposure estimation

A total of 3,634.39 km2were used to create training data in 1990,
representing the 60% stratified random sample of the 1990 NDVI
signatures extent that in turn classified 2,532.36 km2. Landsat
segments were on average 0.03 km2 (median 0.02) in size,
compared to LUS polygons that were on average 0.34 km2 (median
0.20). There was an average of 29 (22 standard deviation [SD])
pixels (median 24) available to classify each segment.

When selecting the intersections between the segments and the
single-use LUS polygons comprising the majority of each segment's
original area, agreement was substantially high at the CDWR land
use level (top row of Table 1) (Landis & Koch, 1977). The highest
producer's accuracy was observed for asparagus (15/15¼100%). The
highest user's accuracy was observed for cotton (19,059/
20,605¼92.5%). Kappa statistics improved when aggregating seg-
ments and LUS polygons into CDWR broad land use groups and into
phenological groups (Table 1). Select phenological groups out of a
total of 17 representing NDVI patterns over a calendar-year time
period are shown in Fig. 3. Comparable results were observedwhen
examining the entire area of the intersections (bottom row of
Table 1).

A closer examination of the accuracy assessment aggregated to
CDWR broad land use groups reveals satisfactory producer's and
user's accuracy for the majority of the agricultural broad land use
groups (Table 2). Producer's accuracy was upwards of 82.6% for
pasture crops and user's accuracy was upwards of 88.6% for field
crops. Among agricultural broad land use groups, the highest
omission error (96%) and commission error (91.9%) was observed
for idle (i.e., fallow) lands. Truly idle lands were often misclassified
as native vegetation (76.7%), while idle-classified segments were
truly field crops (35.6%) or native vegetation (19.8%) - all of which
belong to the same phenological group (Fig. 3). It is important to
note that among segments that were classified as agricultural use, a
high proportion (73.9e98.9%) truly belongs to an agricultural broad
land use group as opposed to a non-agricultural group (NV, NW, S,
or U) according to the LUS (Table 2).
Table 1
Accuracy assessment of classified Landsat imagery vs. LUS in 1990.a

N
CDWR land use CDWR

land u

Agreement Kappa
(95% CI)

Agree

87,197 segmentsb 75.1 0.700
(0.696, 0.703)

78.5

2,266 km2c 76.4 0.701
(0.699, 0.702)

79.5

Abbreviations: CDWR, California Department of Water Resources; CI, confidence interva
a The accuracy assessment was performed on classified imagery from the 40% classifica

training data. Results are presented for the intersections between segments and single-u
b n¼86,060 segments for phenological groups.
c n¼2,243 km2 for phenological groups.
According to 7,495 PUR applications in 1990, LUS (median
44.83 kg/km2; interquartile range [IQR] 0e195.03) and Landsat
(median 51.56 kg/km2; IQR 0e210.72) pesticide application rates in
1990 were not significantly different for the 1,291 sampled resi-
dential parcels (Wilcoxon signed-rank p¼0.8513). Rates were
significantly correlated (Spearman correlation 0.83; p<0.0001). A
similar number of crop types were present within any given section
when using the LUS (mean 1.3; median 1.0) and Landsat layers
(mean 2.8; median 2.0). A similar number of pesticide-treated crop
types intersected any given 500 m buffer when using the LUS
(mean 1.4; median 1.0) and Landsat layers (mean 1.8; median 1.0).
Using quartiles defined by the distribution of LUS pesticide appli-
cation rates (none: 0 kg/km2; low: >0e44.83 kg/km2; moderate:
44.83e195.03 kg/km2; high: >195.03 kg/km2), agreement between
LUS and Landsat pesticide exposure classifications was high
(weighted kappa 0.766, 95% CI 0.739, 0.792).

Demonstration of Landsat method in 1985

A total of 50,441 segments (mean 0.14 km2; median 0.11 km2)
derived from 1985 Landsat imagery were classified (Fig. 4). Fig. 5
shows the spatial relationships between PLSS sections, LUS crops,
and segments prior to dissolving by crop type and section. There
was an average of 153 (127 SD) pixels (median 120) available to
classify each segment. The majority of segments were classified as
alfalfa (19.5%), followed by cotton (19.3%), field crop (18.7%), and
native vegetation (8.6%).

According to 3,909 PUR applications in 1985, the proportion of
tier matches were significantly different when using the Landsat
method vs. the LUS method (Bowker's p<0.0001; Table 3). The
Landsat method achieved a significantly higher proportion of tier 1
matches (60.3%) compared to the LUS method (57.4%) (McNemar's
p¼0.0002). The Landsat method (99.2%) achieved significantly
more combined tier 1 and 2matches vs. tier 3matches compared to
the LUS method (96.6%; McNemar's p<0.0001). Among the 2,466
PUR applications associated with temporary crops (e.g., cotton), the
Landsat method (65.4%) achieved a significantly higher proportion
of tier 1 matches compared to the LUS method (52.4%; McNemar's
p<0.0001). Among the 1,443 PUR applications associated with
permanent crops (e.g., oranges), the LUSmethod (66.0%) achieved a
significantly higher proportion of tier 1 matches compared to the
Landsat method (51.6%; McNemar's p<0.0001).

A larger proportion of PUR applications associated with the
following temporary crops were matched at tier 1 to Landsat
compared to the LUS: alfalfa (n¼468; Landsat 98% vs. LUS 76%;
McNemar's p<0.0001), dry beans (n¼75; 67% vs. 7%; p<0.0001),
cotton (n¼792; 97% vs. 83%; p<0.0001), and potatoes (n¼300; 65%
vs. 51%; p¼0.0001). Assuming PUR data are accurate, a larger pro-
portion of tier 1 matches among temporary crops is indicative of
broad
se group

Phenological group

ment Kappa
(95% CI)

Agreement Kappa
(95% CI)

0.732
(0.728, 0.735)

82.7 0.779
(0.776, 0.782)

0.731
(0.730, 0.733)

84.4 0.789
(0.788, 0.790)

l; LUS, land use survey.
tion extent that was derived from the 1990 NDVI signatures extent and not used for
se LUS polygons.



Fig. 3. Phenological groups comprised of land uses sharing similar annual NDVI patterns. These phenological groups, derived from a cluster analysis, include land uses that exhibit
(a) a gradual summer NDVI peak, (b) a stable NDVI pattern, (c) a moderate vegetative density peak, and (d) a low NDVI pattern.
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the capacity of Landsat imagery to delineate agricultural use lands
not otherwise present in an outdated LUS. For example, Fig. 6 shows
a residential parcel that was sampled in the 1985 imagery extent
and located in section 15M29S25E10. PUR data indicated one
organophosphate application of 12.68 kg occurred in PLSS section
15M29S25E15 (section south of parcel but intersecting parcel
buffer) on alfalfa on October 5, 1985. No alfalfa fields were present
in this section using the 1990 LUS (left), resulting in a tier 2 match
and an estimated rate of 91.91 kg/km2 for the selected residential
parcel. However, 1985 Landsat imagery (right) identified alfalfa-
Table 2
Accuracy assessment of Landsat imagery vs. LUS in 1990 using number of segments.a

LUS (gold standa

C D F G I NV NW

Landsat

C 2,058 44 17 9 5 76 1
D 27 4,977 42 7 33 291 22
F 68 201 20,884 312 111 517 24
G 10 17 466 2,292 65 364 3
I 13 63 406 91 92 226 6
NV 242 418 1,887 148 1,774 22,770 20
NW 0 2 16 1 2 53 38
P 48 136 775 47 89 29 0
R 0 0 0 0 0 0 0
S 1 2 1 0 1 9 0
T 6 20 985 139 52 133 0
U 95 203 262 28 63 571 10
V 33 583 164 7 27 230 6

Total 2,601 6,666 25,905 3,081 2,314 25,269 130
Producer's 79.1 74.7 80.6 74.4 4.0 90.1 29.2
Agrb 87.0 90.6 91.6 94.3 20.5 7.4 47.7

Abbreviations: Agr, agricultural; C, citrus and subtropical; D, deciduous fruits and nuts; F,
surface; P, pasture; R, rice; S, semi-agricultural; T, truck, nursery, and berry; U, urban; V

a Segments and LUS polygons were aggregated into CDWR broad land use groups. Co
b Agricultural refers to the proportion of land use class classified as agricultural use (a
classified segments in this section, achieving a tier 1 match and
an estimated rate of 128.90 kg/km2. The crop types present in
section 15M29S25E15 according to the LUS and Landsat methods -
alfalfa, cotton, and sugar beet - belong to three different pheno-
logical groups, providing support that the alfalfa-classified seg-
ments are not a result of phenological misclassification (i.e.,
misclassification of a segment as another land use belonging to the
same phenological group).

PUR applications associated with the following permanent
crops achieved more LUS vs. Landsat tier 1 matches: almonds
rd) Total User's Agrb

P R S T U V

8 0 19 23 76 42 2,378 86.5 92.8
190 0 30 23 203 456 6,301 79.0 91.3
499 0 35 628 50 242 23,571 88.6 97.3
32 0 2 228 4 0 3,483 65.8 89.3
58 0 33 97 33 24 1,142 8.1 73.9
93 0 121 78 1,262 43 28,856 78.9 16.2
0 0 0 2 10 0 124 30.6 18.5

6,133 0 10 81 45 176 7,569 81.0 98.9
0 0 0 0 0 0 0 e e

3 0 2 0 1 3 23 8.7 47.8
195 0 1 2,130 7 31 3,699 57.6 96.2
56 0 174 30 3,208 94 4,794 66.9 17.3

161 0 25 91 40 3,890 5,257 74.0 94.3
7,428 0 452 3,411 4,939 5,001 87,197
82.6 e 0.4 62.4 65.0 77.8
98.0 e 34.3 96.8 9.3 97.2

field; G, grain and hay; I, idle; LUS, land use survey; NV, native vegetation; NW, water
, vineyard.
ncordant cells have been underlined.
ll classes except NV, NW, S, and U).



Fig. 4. Segments overlaying an August 1985 NDVI image. Segments were classified into
land uses according to the most frequently occurring ML-classified pixel.

Table 3
Pesticide application tier matching in 1985: LUS vs. Landsat methods.

LUSa pb

Tier 1 Tier 2 Tier 3 Total

Landsata

Tier 1 1,864 452 40 2,356 <0.0001
Tier 2 381 1,081 58 1,520
Tier 3 0 0 33 33
Total 2,245 1,533 131 3,909

Abbreviations: LUS, land use survey.
a 3,909 organophosphate applications (249,094.22 kg) in 1985 imagery extent.
b p-value reported from Bowker's test of symmetry.
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(n¼588; LUS 85% vs. Landsat 75%; McNemar's p<0.0001), oranges
(n¼322; 91% vs. 75%; p<0.0001), and peaches/nectarines (n¼89;
85% vs. 46%; p<0.0001). Further examination of the crops associ-
ated with a greater number of LUS tier 1 matches revealed potential
phenological misclassification. Among the 58 PLSS sections asso-
ciated with LUS tier 1 almond matches, but no Landsat tier 1
matches, 95% contained segments classified as alfalfa, 26% with
mixed pasture, and 12% with apples - all three of which belong to
the same phenological group as almonds (Fig. 3).

LUS rates (median 20.18 kg/km2; IQR 0e67.25) were signifi-
cantly different from Landsat rates (median 15.69 kg/km2; IQR
0e57.16) for the 1,293 sampled residential parcels (Wilcoxon
Fig. 5. PLSS sections overlaying 1990 Kern County LUS crops (left) and Landsat segments in 1
each spatially joined to PLSS sections and dissolved according to crop type and section to f
signed-rank p¼0.0448). However, a similar number of crops
intersected any given section using the LUS (mean 3.1; median 3.0)
and Landsat layers (mean 4.0; median 4.0). A similar number of
pesticide-treated crops also intersected any given buffer using the
LUS (mean 2.2; median 2.0) and Landsat layers (mean 2.7; median
2.0). Pesticide exposure classification according to LUS quartiles
(none: 0 kg/km2; low: >0e20.18 kg/km2; moderate:
20.18e67.25 kg/km2; high: >67.25 kg/km2) demonstrated sub-
stantial agreement between both methods (weighted kappa 0.711,
95% CI 0.682, 0.740).
Discussion

GIS-based metrics are powerful tools in examining the rela-
tionship between pesticide exposure and human health outcomes.
For example, the standard GIS method in California estimates
agricultural pesticide exposure at residential locations through
matching PUR pesticide applications with LUS crops (Rull & Ritz,
2003). However, dynamic agricultural landscapes, as a result of
crop rotation and land use conversion (Chen, Li, & Allen, 2010),
contribute to relevant changes that may impact GIS-basedmethods
of estimating pesticide exposure. LUS's are intermittently updated
every seven to 10 years on a county basis. Pesticide exposure
estimation during a year lacking a temporally concurrent LUS will
be affected as the utilized LUS may not adequately capture agri-
cultural lands during that particular time period. Methods of
incorporating remote sensing such as Landsat, which provide
multispectral and multitemporal imagery capable of distinguishing
landscape features (Maxwell, Meliker, & Goovaerts, 2010; USGS,
985 (right). LUS crops and segments (created frommonthly NDVI images in 1985) were
acilitate PUR matching. For reference, this map includes section 15M27S20E01.



Fig. 6. Comparison of LUS vs. Landsat pesticide exposure estimation in 1985 for one residential parcel. One organophosphate alfalfa application (12.68 kg) in section 15M29S25E15
resulted in a tier 2 LUS match and LUS pesticide application rate of 91.91 kg/km2 (left) and a tier 1 Landsat match and Landsat pesticide application rate of 128.90 kg/km2 (right).
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2014), allow for a useful approach to improving pesticide exposure
estimation. The primary strengths of this research include the
implementation of the Landsat method, an improved MLC and per-
field classification approach to classify Landsat imagery into crops
(compared to minimum distance methods), and the demonstration
of a linkage between PUR data and Landsat-classified crops to es-
timate agricultural pesticide exposure in California in a year
without a concurrent LUS.

The results of the accuracy assessment in 1990 provide evidence
of the Landsat method's ability to both classify crops and estimate
pesticide exposure as all results were in high agreement with the
LUS gold standard method. The high correlation between Landsat
and LUS pesticide application rates in 1990 bolsters the potentially
negligible impact of any land use misclassification on pesticide
exposure estimates. It should be noted that parcels from 2012 were
used to estimate exposure in both 1990 and 1985. Although it is
possible that sampled parcels were not present or were located in
different areas during these times, any bias in exposure estimates
would be nondifferential between the two methods. It is possible
that the pesticide exposure accuracy results in 1990 may not reflect
the accuracy of pesticide exposure estimation in 1985. A lower
number of pesticide applications in 1985 vs. 1990 is a result of PUR
reporting changes, increases in pesticide usage in California in the
1990s, pest outbreaks, and inclusion of different PLSS sections
associated with the 40% classification extent vs. the 1985 imagery
extent (CDPR, 2014; Godfrey, Rosenheim, & Goodell, 2000;
Pesticide Action Network, 2013). However, as the proportion of
the most commonly pesticide-treated crops were similar between
1985 and 1990 (20e30% cotton, 15% almonds, 12% alfalfa, 8% or-
anges, 7e8% table grapes), this lends confidence to the pesticide
exposure accuracy assessment results generalizing to 1985 and
little evidence of a differential proportion of treated crops between
these two years.

The most prominent finding of the Landsat method demon-
stration in 1985 was the improvement in tier 1 matches, where
significantly more pesticide applications were directly matched to
Landsat crops vs. LUS crops - especially among temporary crops.
Temporary crops are sown/seeded and harvested during the same
crop growing season (e.g., cotton), while permanent crops (trees
[e.g., apples]) are sown or planted once and do not require
replanting following harvests as they occupy the land for a long
period of time (Food and Agriculture Organization, 2013).
Assuming Landsat images in 1985 were accurately classified, the
linkage between PUR data and Landsat crop fields was most
beneficial to PUR applications associated with several truck, field,
and pasture crops, which are comprised of temporary crops char-
acterized by year-to-year changes. Agricultural growing practices
are not limited to monocultures, or the repetitive growing of the
same crop on the same land, but may include multiple cropping
systems, also known as mixed cropping or polyculture, that
intensify agricultural production through maximizing the effi-
ciency of space and time to bio-diversify and stabilize the land,
fertilize the crops in sequence, and promote pest control
(Gliessman, 1985; Sullivan, 2003). For example, crop rotation con-
sists of the repetitive growing of different crops in a systematic and
recurring sequence on the same field, can be characterized by
annual crop changes, and is widely practiced across the U.S
(Liebman & Dyck, 1993; USDA, 2013).

The important theme underlying multiple cropping systems is
the dynamic nature of agriculture, where any given year or growing
season does not remain static. Using Landsat images to classify
crops to match to PUR pesticide applications directly addresses
these dynamic crop changes through not relying on outdated LUS's
for crop fields. Promising results that serve to support the utility of
a Landsat and PUR database linkage were demonstrated among the
crops associated with Landsat tier 1 matches. A significantly higher
proportion of 1985 organophosphate PUR applications associated
with alfalfa, beans, cotton, and potatoes were able to be directly
matched to 1985 Landsat-classified crops as opposed to 1990-dated
LUS crops. These particular crops are temporary and are associated
with documented crop rotation cycles in California, e.g., alfalfa is
rotated with plants that do not host alfalfa-damaging pests (nem-
atodes) such as cotton and beans (University of California Statewide
Integrated Pest Management Program, 2006).
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GIS and remote sensing methods of estimating human pesticide
exposure apply concepts from nonpoint source (NPS) pollution
spatial models of environmental risk assessment (Phillips, 1988).
NPS pollution is the diffuse and dispersed contamination of surface
or groundwater via runoff or leaching due to irrigation or precipi-
tation. Our study of NPS pesticide pollution focused on pesticide
drift and implemented NPS risk assessment concepts considering
the spatial distribution and movement of pollutants, pollution
sources, and affected resources. For example, this study used a
500 m buffer to address pesticide drift affecting residences,
matched pesticide applications to crop fields to identify potential
pollution sources, and used geocoded locations to identify poten-
tially exposed individuals.

Although this study utilized California data sources, the Landsat
method's framework, which requires Landsat images, ground truth,
pesticide applications, and geocoded residences, can be applied to
other U.S. states and countries. For example, the Iowa Department
of Natural Resources (DNR) Land Cover datasets, capturing classes
including corn and soybeans, could be used as ground truth to
classify Landsat images (Natural Resources Geographic Information
System Library, 2015). Iowa DNR interpolated density surfaces of
yearly pesticide sales (lb sold per mi2) could be used as a proxy for
applied pesticides. In the United Kingdom, the Pesticide Usage
Survey (PUS) collects pesticide use from different sectors including
agriculture and horticulture, and the Centre for Ecology and Hy-
drology creates Land Cover Maps that classify crops such as barley
and carrots (Centre for Ecology and Hydrology, 2015; Fera, 2015).
Matching of available pesticide data to agricultural lands may have
to adopt methods beyond three-tier matching to accommodate
discrepancies in spatial scales and in reported pesticide-treated
crops such as aggregation or disaggregation. If studying a small
geographic area, it may be feasible to acquire ground truth, pesti-
cide applications, and geocoded residences via surveying methods.

The Landsat method: implications for health and epidemiology

GIS-based pesticide exposure metrics, such as the Landsat
method, through their ability to incorporate multiple data sources
with locational, dated information and specific chemicals, can
address many important issues underlying the examination of
chronic human health diseases including long latency periods (time
between initial exposure and clinical diagnosis of disease), histor-
ical reconstruction to capture potential latency periods, multiple
routes of exposure (e.g., dermal, inhalational, and oral), human
exposure to multiple pesticides at different points in time, and
recall bias (Franklin & Worgan, 2005). For example, the Landsat
method can be implemented in any year in California with PUR
pesticide data (1974 to present) and Landsat images (1972 to pre-
sent) to estimate exposure to specific chemicals according to geo-
coded locations, capable of reconstructing past exposure relevant
to epidemiologic studies seeking to address a latency period.

In an analytical epidemiologic study investigating if an exposure
is associated with the risk of developing a particular disease, it is
vital to provide the most accurate estimate of the exposure of in-
terest. Otherwise, measures of association derived from the study
are subject to bias. The Landsat method offers the opportunity to
bridge the temporal gap between when pesticide exposure is to be
estimated and the crop fields to which pesticide applications are
matched. The Landsat method thus provides a way to minimize
exposure misclassification when conducting an epidemiologic
study based on findings from 1985 regarding more pesticide ap-
plications directly matching to Landsat crops compared to LUS
crops. These tier 1 matches are ideal because they demonstrate a
direct linkage between what is being reported in a PUR pesticide
application in terms of the treated crop in a given PLSS section and
what crops are present in a PLSS section according towhat has been
classified from Landsat images.

Strengths

Strengths include using NDVI values as the basis for image
classification, representing the most widely used vegetation index
and highly correlated with photosynthetic activity relevant to our
interest in classifying agricultural land uses (Pettorelli et al., 2005;
USGS, 2011). The Landsat method uses an improved MLC and per-
field classification approach compared to a previous study imple-
menting a minimum distance method representing training data
crop fields with a single NDVI pixel value at the label point or that
was seemingly representative of the polygon that failed to account
for variability within and across crop fields (Maxwell, Airola, et al.,
2010; Maxwell, Meliker, et al., 2010). The sample a priori Bayesian
weighting logic in MLC incorporates information regarding
particular land use classes (e.g., cotton) having consistently domi-
nated the agricultural landscape in Kern County throughout the
study time period (Campbell & Wynne, 2011; USDA, 2014). The
Landsat method also includes per-field classification integrating
raster and vector data that accounts for within-field spectral vari-
ability as each pixel's captured spectral signature may be impacted
by soil moisture, pests, and disease (De Wit & Clevers, 2004;
Guerschman et al., 2003; Turker & Ozdarici, 2011). Through
implementing a majority rule in per-field classification, the spatial
autocorrelation of agricultural crop fields was addressed, as pixels
close in proximity likely belong to the same agricultural crop field,
essentially averaging out the noise caused by the typical salt-and-
pepper effects of per-pixel MLC classifiers (Lu & Weng, 2007).
Furthermore, (crop) fields were created using a local behavior-
based image segmentation procedure, which implemented a
watershed delineation method of merging/growing pixels across
input bands (monthly NDVI images) exhibiting minimal variance,
or spectrally similar pixels that are likely of the same land use (Yu
et al., 2006). Although the vector fields used in per-field classifi-
cation are typically parcels dividing the landscape (i.e., the seg-
ments usedmay not parallel crop field boundaries) (Hill, 1999; Lu&
Weng, 2007), classified segments were dissolved according to crop
type and PLSS section, which was meaningful in terms of linking
the PUR database to agricultural crop fields. Sensitivity analyses of
the accuracy assessment using different segment sizes also
demonstrated similar results (phenological group kappas ranging
from 0.70 to 0.75).

Limitations and future research

Misclassification of crops exhibiting similar phenological pat-
terns was evident in some high omission and commission errors
and potentially contributed to a higher proportion of LUS tier 1
matches in 1985 compared to Landsat among some crops. A po-
tential contributing factor to phenological misclassification is the
absence of November and December images within a given crop's
growing season. A refined three-tier methodology incorporating
the LUS and Landsat methods that harnesses the results regarding
phenological misclassification and the differential capabilities of
capturing temporary vs. permanent crops should be explored.
Another limitation is associated with the hard classification used to
assign each segment to one land use class. Although precautions
were taken when creating training data (e.g., single-use LUS), the
classification method could not account for intra-annual crop
rotation, for example, when two or more crops are successively
grown on the same field each year (Gliessman, 1985). Focusing the
analysis on acquiring imagery to classify specific crop types with
known planting and harvesting dates may minimize this issue.
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More focused GIS exposuremodeling of environmental health risks
would improve exposure estimation by including information
regarding how pesticides are transported through the air, soil, and
water (Lam, 2012). Although a 500 m buffer has been used in
previous studies for its relevance to pesticide drift, it could be
replaced with a boundary (defined by a pesticide exposure
threshold) delineated using a dispersionmodel to determinewhere
applied pesticides are transported.

The utility of using NDVI land use signatures from one year to
train images from another year is affected by spatiotemporal
changes in NDVI values. Although we used a time series of NDVI
images for training and classification, NDVI values are affected by
remote sensing system characteristics, meteorological conditions,
ecosystem disturbances, and seasonality (Forkel et al., 2013). NDVI
values can be unreliable in sparsely vegetated areas due to soil
reflectance (Pettorelli et al., 2005). It would be valuable to explore
other vegetation indices, e.g., Soil Adjusted Vegetation Index (SAVI)
that adjusts for soil spectral variability (Sonnenschein, Kuemmerle,
Udelhoven, Stellmes, & Hostert, 2011), and non-reliance on a single
vegetation index for classification, but rather implementing so-
phisticated classification techniques that incorporate ancillary in-
formation (e.g., slope) to further enhance classification accuracy
(Yu et al., 2006).

Conclusions

The Landsat method is an improved GIS and remote sensing
method that can be used to estimate individual-level agricultural
pesticide exposure at geocoded locations. The Landsat method
addresses the dynamic nature of agriculture, especially crop ro-
tations, through providing an approach to match pesticide appli-
cations to crop fields classified from temporally concurrent
Landsat images rather than outdated LUS crop fields from the
standard GIS method in California. In a demonstration of the
Landsat method's ability to improve pesticide exposure estimation
using 1985 data in California, significantly more pesticide appli-
cations, particularly among temporary crops, were matched to
Landsat crops compared to LUS crops. This improvement is
attributed to matching 1985 pesticide data to crops classified from
1985 Landsat images as opposed to 1990 LUS crops, which would
be used in practice as it is the LUS conducted closest in time to the
1985 pesticide data. Future research should explore using the
Landsat method as an exposure metric in an epidemiologic study
as it is able to reconstruct historical exposure to specific chemicals
at geocoded locations, and using ancillary data in Landsat image
classification to improve land use classification and pesticide
exposure estimation accuracy.
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