Computers, Environment and Urban Systems 67 (2018) 29-40

Contents lists available at ScienceDirect
coMPII'I'ERS
ENVIRONMENT

AND
URBAN SYSTEMS

Computers, Environment and Urban Systems

journal homepage: www.elsevier.com/locate/ceus

Scalable evacuation routing in a dynamic environmentx

@ CrossMark

Kaveh Shahabi ***, John P. Wilson

@ Computer Science Department, University of Southern California, Los Angeles, CA, USA
b Google Inc., Mountain View, CA, USA
¢ Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 8 August 2016

Received in revised form 19 August 2017
Accepted 26 August 2017

Available online xxxx

In emergency management, tools are needed so we can take the appropriate action at different stages of an evac-
uation. Recent wildfires in California showed how quickly a natural disaster can affect a large geographical area.
Natural disasters can create unpredicted traffic congestion or can temporarily block urban or rural roads. Evacuat-
ing a large area in an emergency situation is not possible without prior knowledge of the road network and the
ability to generate an efficient evacuation plan. An ideal evacuation routing algorithm should be able to generate
Keywords: realistic and efficient routes for each evacuee from the source to the closest shelter. It should also be able to quickly
GIS update routes as the road network changes during the evacuation. For example, if a main road is blocked during a

Evacuation flood, the evacuation routing algorithm should update the plan based on this change in the road network. In this
Traffic article major works in evacuation routing have been studied and a new algorithm is developed that is faster and
Routing can generate better evacuation routes. Additionally, it can quickly adjust the routes if changes in the road network
Dynamic are detected. The new algorithm's performance and running time are reported.

Environment

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

How to plan a large-scale evacuation is a serious and an important re-
search question. However, this question is not entirely answered. Cur-
rently we have the required computational power and good quality
geospatial data to produce evacuation routes for large geographical
areas. Furthermore, the advent of mobile platforms and smart cars
have made it possible to reach out to individuals in seconds with life-sav-
ing news as might happen during a disaster. The missing element is the
ability to generate efficient evacuation routes at large scale. Such a sys-
tem should be able to monitor the evacuation and update the routes in
case some of the initial conditions have changed.

Imagine there is a wildfire in Southern California. Fig. 1 shows a map
of Southern California with major roads and historical wildfire incidents.
The responsible agency generates evacuation routes to convey residents
from each threatened neighborhood to specific shelters. These routes can
be communicated with each neighborhood via a mobile or car app. As-
suming none of the initial conditions change, everyone will get to a shel-
ter in a reasonable and predictable time. The problem of generating these
evacuation routes while minimizing the traffic congestion is what we call
static evacuation routing. As the evacuation is happening, a number of
things can change in the environment: (1) there could be background

* This study was completed as part of his graduate work before he joins Google.
* Corresponding author at: Computer Science Department, University of Southern
California, Los Angeles, CA, USA.
E-mail address: shahabi@google.com (K. Shahabi).

http://dx.doi.org/10.1016/j.compenvurbsys.2017.08.011
0198-9715/© 2017 Elsevier Ltd. All rights reserved.

traffic that were not initially considered; (2) automobile accidents can
temporarily affect the traffic flow; (3) changes to the road network
such as a damaged bridge, a partially blocked road, or a flooded under-
pass can affect the road network; and (4) there could be more cars leav-
ing one or more neighborhoods than we anticipated. Each of these
situations can affect the evacuees. The public safety agency can learn
about these changes either via the same mobile app (crowd sourced)
or with the help of onsite public safety personnel. Updated evacuation
routes could then be generated and pushed to affected motorists. The
problem of generating and maintaining evacuation routes in a dynamic
environment is called dynamic evacuation routing.

In this article, we propose a new solution to the dynamic evacuation
routing problem. We focus on solutions that can be scaled to large geo-
graphical areas at least the size of a city. The remainder of this section
provides an overview of the broader evacuation planning process with
an emphasis on evacuation routing challenges. We then lay out the con-
tribution and scope of our solution with respect to the evacuation plan-
ning problem. Section 2 reviews related work on evacuation routing.
Section 3 formally defines the problem and explains the solution.
Section 4 presents the experimental results. Section 5 offers conclusions.

1.1. Background

The evacuation problem can be decomposed into four phases: (1) mit-
igation; (2) preparedness; (3) response; and (4) recovery (Cova, 1999).

The mitigation and preparedness phases refer to the time before the
incident actually happens. Since the nature of the disaster is not known at

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2017.08.011&domain=pdf
http://dx.doi.org/10.1016/j.compenvurbsys.2017.08.011
mailto:shahabi@google.com
Journal logo
http://dx.doi.org/10.1016/j.compenvurbsys.2017.08.011
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/ceus

30 K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40

T
P

}

' éan Luis Obispo

Legend

Wildfire Year

0 2007

Main Road | 2008

B 2000

Freeway

—— Highway

0 20 40 80 Km
| R TR T8 T O T Y 1|

Wildfire data source: USFS R5 (California) GIS Clearinghor

n Bernardino

2007

Fig. 1. Map of historical wildfires in southern California with major roads.

this stage, solutions to this sub-problem are less about the execution de-
tails and more focused on the surrounding geography. For example,
Church and Cova (2000) presented a model to detect overpopulated
neighborhoods that might face traffic congestion during an evacuation.

The post-disaster recovery is the stage where emergency personnel
care for the affected population, maintain shelters, and assess the damage.
For example, Yi and Ozdamar (2007) proposed a solution for evacuation
response and support coordination during an emergency situation. The
proposed model considers the food distribution to shelters and transpor-
tation of wounded people to medical centers as a commodity distribution
problem. They formulated and solved the problem with mixed-integer LP.

The evacuation response refers to what needs to be done from the
moment we learn about a disaster up until the time at which all of the po-
tentially affected population is secured in safe areas. At this stage the loca-
tion and time of the disaster and the evacuees are the key information.

Disasters can be static or dynamic. Dynamic disasters are those with
changing behavior, location, or severity. Disasters like tsunami or terror-
ist attacks are considered static because the affected area, once known, is
static. Other disasters like hurricanes, wildfires, and floods are dynamic
since they move from one place to another. Of course given the circum-
stances, any disaster can become dynamic.

The evacuees are those residents who leave voluntarily whereas
others may choose to shelter in place. The locations of the evacuees
may be gathered from a variety of sources. In the U.S., high resolution
population data is available through the U.S. Census Bureau (e.g. U.S.
Census Bureau, 2010). However, these sources refer to residential pop-
ulations and would not reflect the population distribution during the
day. The LandScan team at Oak Ridge National Laboratory presented a
method to extract high-resolution population data from a combination
of geospatial datasets including satellite imagery (Bhaduri, Bright,
Coleman, & Dobson, 2002). Kobayashi, Medina, and Cova (2011) pre-
sented a dynamic population model to improve and visualize diurnal
population density based on public transport data.

1.2. Contribution
In previous works the static problem has been studied and several al-

gorithms exist that can efficiently solve the problem (e.g. Lu, George, &
Shekhar, 2005; Shahabi & Wilson, 2014). In this article we propose a

routing solution for the dynamic environment. We formally define the
problem and then develop a framework to solve both the static and dy-
namic versions of the problem.

Our main contribution is an iterative algorithm that can solve the
evacuation problem in both static and dynamic environments. Our solu-
tion generates evacuation plans with better evacuation egress times
compared to previous works. The secondary contribution is the ability
to use a previously calculated evacuation plan to quickly find a new
plan when a network change is detected.

2. Related work

The majority of the evacuation routing works in the literature can be
divided into descriptive and prescriptive methods. Descriptive methods
are those that visually simulate a given emergency situation. For exam-
ple agent-based modeling (traffic simulation) visualizes what will hap-
pen during an emergency (Santos & Aguirre, 2004). Pel, Bliemer, and
Hoogendoorn (2011) provided a thorough review of traffic simulation
models for evacuation and looked specifically at the underlying formula-
tion and psycho-behavioral assumptions of both commercial and aca-
demic traffic simulations. They categorized the models based on three
choices: (1) evacuation participation and departure time; (2) destination
choice; and (3) route choice. Prescriptive methods, on the other hand,
determine the evacuation routing strategies to achieve some evacuation
goal without necessarily performing a fine-scale simulation (Chiu,
Zheng, Villalobos, & Gautam, 2007). In this section we briefly discuss
major prescriptive evacuation routing methods.

Kwon and Pitt (2005) used the Dynasmart-P software (Mahmassani,
Sbayti, & Zhou, 2004) to simulate the vehicular traffic for an evening
event in downtown Minneapolis. They blocked different freeway
ramps and observed the evacuation egress times. In one configuration
they also implemented contraflow on freeways inside the study area.
They concluded that it is feasible to study evacuation strategies using a
dynamic network assignment model in a downtown-sized environment.

Xie, Lin, and Travis Waller (2010) defined and solved a new dynamic
evacuation network optimization problem. In their work they consid-
ered both lane-reversal (contraflow) and crossing elimination jointly to-
gether and optimized the system for total evacuation egress time. The
optimization was also conducted separately for network clearance

K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40 31

time. At a high level, the problem was formulated as a dynamic traffic as-
signment model and then solved with integrated Lagrangian relaxation
and tabu search subject to the lane-reversal and crossing-elimination
constraints. The experiments were performed for an area of 10-mile ra-
dius centered at the Monticello nuclear plant located in Minnesota.

Stepanov and Smith (2009) proposed a three-step LP-based urban
evacuation routing algorithm that considered non-linear traffic flow.
First, they generated k™ shortest paths from every evacuee point to
every safe area. They next evaluated the quality of every path using a se-
lected traffic model. And finally, they formulated the evacuation problem
as an integer linear program (ILP). The ILP formulation considers the
non-linear effect of every evacuee's path on others and then computes
optimum evacuation routes. The same group previously studied both lin-
ear and non-linear analytical traffic models (Smith, 1991; Smith & Cruz,
2005) and has used them in their urban evacuation algorithm. Due to the
computational complexity of the algorithm, the experiments were per-
formed on a graph with just 11 nodes.

Bayram, Tansel, and Yaman (2015) recently published an evacuation
planning solution that formulates the problem as a linear program that
can be solved on a small graph. They used the U.S. Bureau of Public
Roads (BPR) traffic model to estimate traffic times (U.S. Federal
Highway Administration, 2014). They argued that evacuees may not
willingly take a longer path to safety when there is a nearby shelter.
However, they may take a slightly longer path. They formulated this as-
sumption into their model and reported their experimental results.
Nassir, Hickman, Zheng, and Chiu (2014) also recently published work
that combines traffic signal optimization with evacuation routing. They
initially decoupled the two problems without losing optimality and
then formulated the routing problem as LP and solved it. Both of these
fairly recent LP-based evacuation routing solutions can be used on
graph sizes of up to 1000 nodes.

The Capacity Constrained Route Planner (CCRP) algorithm is a realis-
tic evacuation routing solution that considers road capacity and popula-
tion density (Kim, George, & Shekhar, 2007; Lu et al., 2005; Zhou et al.,
2010). It also performs routing and scheduling simultaneously in order
to improve the evacuation egress time. CCRP was the first algorithm
that went beyond an LP or a simple shortest path solution. In essence,
CCRP routes all evacuees to safety one at a time while constraining the
road network (graph) to its road and intersection capacities. It can detect
network bottlenecks (cuts) and can schedule evacuees in order to avoid
graph saturation. The authors have continuously improved this algo-
rithm to achieve better results. In recent work, they have developed a
dartboard network cut-based approach to further improve the running
time (Yang, Gunturi, & Shekhar, 2012). The main concern with CCRP is
that it does not consider traffic congestion realistically. Therefore, its
final evacuation routes are not optimized based on road network conges-
tion. CCRP is also not suitable for evacuation in dynamic environments as
it would need to be executed from scratch every time.

In another work, Pourrahmani, Delavar, Pahlavani, and Mostafavi
(2015) transported evacuees to long-term shelters in multiple stages
using public transportation. At each time interval, an OD matrix is gen-
erated from all interesting points, and a simulated annealing (SA) heu-
ristic is used to solve the vehicle routing problem (VRP) at each stage.

We have briefly explained past work in the field of prescriptive evac-
uation routing. Some utilized LP-based solutions and others implement-
ed heuristic algorithms for evacuation routing. While most methods
consider traffic as a dynamic element, none has allowed the road net-
work itself to vary through time. In the following section we formally in-
troduce the evacuation routing problem in a dynamic environment and
then propose a heuristic algorithm to solve it.

3. Method
In this section, we first formally define the problem. Next, we briefly

explain how the Capacity-Aware Shortest Path Evacuation Router (CAS-
PER) can be used to solve the static problem (Shahabi & Wilson, 2014).

We then introduce two extensions to CASPER that would make it both
faster and modular. With the help of these two extensions a new algo-
rithm is designed called Dynamic CASPER (DCASPER). The following
are the fundamental assumptions we have made in the DCASPER design:

1. We assume everyone starts an evacuation at the same time. In other
words, we do not schedule the evacuation for some evacuees. We do,
however, allow delays between cars coming from the same evacua-
tion point. This technique is called metering and will dictate the au-
tomobile density on roads.

2. We assume that we have access to a traffic model in the form of a
mathematical function that can predict the congestion on a street
segment given total automobile density. Different traffic models
can be used with DCASPER.

3. We assume all the cars at one evacuee point are inseparable and need
to travel the same path. They generally remain close to each other
throughout the evacuation.

4, The changes to the road network are not initially known; hence, the
algorithm can only adjust once it learns about them. The only thing
that cannot change during the evacuation are the shelter locations.

3.1. Problem statement

We model the dynamic evacuation routing problem as a path finding
problem on a directed graph G(E,V). We assume the graph elements are
accessible in constant time. In addition, without loss of generality, we as-
sume there is only one destination node (shelter) in the graph. The case
with multiple destination nodes can be reduced to the single-destination
case by introducing an artificial super sink node and connecting it to all
the actual destination nodes with zero-cost edges.

The problem has five inputs: (1) the road network (graph); (2) the
table of temporal road network changes; (3) a traffic model to predict
congestion; (4) the evacuee locations; and (5) the destination point.
The output is evacuation routes and predicted traversal times for each
evacuee. The transportation network is represented as a graph G(E,V)
with |V] vertices and |E| directional edges (E C V?). The changes in the
network are modeled with the table of temporal changes. For example
if one was modeling a wildfire evacuation, each time the fire blocks a
group of roads, a new time interval would be created with the corre-
sponding graph changes. Of course, the problem is more complex if
there are frequent changes in the network.

Each graph edge e has positive initial impedance (imp) and capacity
(cap). Since the road network can change during the evacuation, neither
of these values are constant. For example, the impedance could be the
initial road segment traversal time (without traffic) and the capacity
could be the number of lanes. This edge e may no longer be accessible
20 min after the evacuation starts due to fire hazard. We model this
road inaccessibility as a decrease in the number of lanes (capacity),
which means the capacity of edge e becomes zero after minute 20. Gen-
erally speaking, we are allowing each graph edge to change its values at
some time after the start of the evacuation. In other words, at each time
interval, a subset of edges can change their impedance and capacity
values to larger or smaller values.

GC = {gc = (time, e,imp, cap)|time>0,e€E} : set of all graph changes
imp,.(e), cap,(e) : impedance and capacity of edge e after graph changegc (1)
Ve€E, gceGC impy.(e) 20, capy.(e) 20

The set S holds all the evacuee points and their populations. Each
evacuee point s has a positive weight w(s) (Eq. (1)). For example, an
evacuee point could be a census block group or a residential building.
The weight is the number of vehicles at that point. Each evacuee point
can have many vehicles.

VSES, SCV w(s)>0 (2)

32 K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40

Each evacuee point s generates a different density on each edge. If we
assume that one car leaves the neighborhood every 2 s. Edge e is 20 s in
length, and evacuee s has 300 cars, we can calculate the density based on
the initial delay between each vehicle. So we have delay = 2 s, imp(e) =
20 s, w(s) = 300. Eq. (2) computes the density from an evacuee point on
an edge as the number of cars that fits on that edge: den(s,e) = 20/2 =
10. A path P is an ordered set of edges. It starts at s and ends at a shelter
(t). Therefore, the total density on edge e is the sum of all densities from
all paths that pass through e (Eq. (3)).

deng(s,e) = min (m;i i;;e) ,w(s)> (3)
VSES, PyEg, PsCE @

deng(e) = > cep, deng(s, e)

The traffic model is a function with two parameters (d,c) (Eq. (4)).
This function estimates the congestion based on edge total density (d)
and capacity (c). The traffic model outputs a number between 0 and 1:
7 = 1 means there is no traffic congestion and 7 = 0 means infinite con-
gestion. Eq. (5) calculates the cost of traversing an edge. From there, we
calculate the cost of each path. The first term in the path cost formula (Eq.
(6)) accounts for the extra time imposed by the initial vehicle delays and
the second term sums the cost of each edge of the path. The summation
in Eq. (6) needs to know at what time interval each evacuee arrives at
each edge to be able to sum up the correct edge costs. We call this the ar-
rival time of evacuee s to edge e over its path: arrival(s,e,Ps) e GC. The ob-
jective is to minimize the final evacuation egress time (Eq. (7)).

vd,ceR* T(d, €(0,1,7(0,0) = 1,2 7(d,0)<0,. L 7(d. 020 (5)

ad dc
impy(e)
trgc(€) = 6
costr gc(€) - (dengc(e),capgc(e)) (6)
costr(Ps) = delay x w(s) + costy g(e) (7)

e€P; gc=arrival(s,e,Ps)
EvcTime = max{ costr (Ps) | PsEg }, Objective : minimize EvcTime (8)

When evacuation routes share an edge, they are going to affect each
other's traffic. The density on the shared edges will increase which re-
sults in higher egress times. In order to lower the egress time, the routing
algorithm needs to find the shortest paths to safety while minimizing the
traffic congestion. Table 1 describes the remainder of the symbols which
are used in this article.

3.2. Traffic model

We have thus far discussed how we use traffic models without de-
scribing a model. Traffic congestion and modeling has been studied by
traffic researchers both in theoretical and experimental form. Therefore,
there are many approaches and models to choose from (e.g. Greenberg,

Table 1
Descriptions of symbols.
Symbol Description
DvVCV Dirty vertices set
DECE Edges with changed costs (dirty edges)
g(v) eR™ Cost from source to vertex v
h(v) eR™ h value of vertex v that serves as a lower bound of the cost
to destination
SPT Shortest path tree; also an algorithm that finds such a tree
S The set of unprocessed evacuee points

1959; Helbing, 2001; Holden & Risebro, 1995; Malone, Miller, & Neill,
2001; Smith, 1991; Smith & Cruz, 2005). For the purpose of this research,
we used an empirical model called the Power Traffic Model. It can be for-
mulated as follows:

Power : T(d,c) = 1—yVd x e™*
where 7y and ¢ are constants (9)
vy =0.02261,¢ = 0.01127

The Power model has a flexible formulation and is the result of em-
pirical curve fitting (Shahabi & Wilson, 2014). We defined the constants
such that a single-lane, one-way road segment with a car density of 500
would have 7 = 0.5 and a three-lane segment would have 7 = 0.51. Both
constants, 'y and ¢, will remain unchanged even if the road network
changes. This model improves the traffic congestion predictions and
the evacuation egress time estimates. Experimenting with different traf-
fic models is beyond the scope of this work. However, interested readers
are encouraged to look at the extensive review of traffic flow models pro-
vided by Leutzbach (1988).

3.3. Static solution

Our solution to the dynamic evacuation problem is built on top of the
static solution described in Fig. 2. This schematic diagram illustrates the
CASPER architecture and provides a high-level description of the process.

Initially, all inputs are loaded: evacuees, shelters, and the traffic model.
Then a separate module called the Capacity-Aware Reverse Map Analyzer
(CARMA) is utilized to build a graph from the GIS data. CARMA is also re-
sponsible for building a set of heuristics on the graph that improves the
overall running time. To generate the evacuation routes, a routing algo-
rithm similar to A* (Hart, Nilsson, & Raphael, 1968) is implemented. CAS-
PER finds the shortest route for each evacuee while considering the
predicted traffic times and automobile density. Once the route is found,
CASPER reserves the route for the corresponding evacuee and then
moves on to the next evacuee. Every time a route is reserved, the predict-
ed traffic times are changed and consequently the graph heuristics are
invalidated. Because the routing process heavily relies on these heuristics,
CASPER gets slower and slower as it reserves more routes. Therefore, it is
necessary to refresh these heuristics. CARMA has a mechanism to detect
when a good time to rebuild the heuristics occurs. After rebuilding the
heuristics, CASPER resumes to process more evacuees. This back-and-
forth process between CASPER and CARMA continues until all evacuees
are processed. Algorithm 1 outlines the CASPER evacuation routing sys-
tem that solves the static evacuation problem.

Algorithm 1. Static Evacuation Routing

Input: G, S, t, T
Pe—¢
Vs €S, w(s)>0do {
1. route Ps « FindEvacuationRouteT(G, s, t)
. P<PU{P}
. Reserve P fors. Ve € Ps: den(e) is increased by den(s,e)
. Update edges cost: Ve € P recalculate costy(e)
. Collect invalidated heuristic values
. Ifinvalidated heuristic ratio > 20% {
6.1. Run CARMA7(G, S, t)
7.}

}
Output: P

Ul AW

CARMA internally builds a shortest path tree (SPT) to perform the re-
quired task. The SPT is built with a single Dijkstra over the reversed G
with t as the starting vertex. Then CARMA updates the heuristic value,
h(v) for all of the vertices. The distance(SPT, s, t) function mentioned in
Algorithm 2 (line 2) is the path cost of s to t on the tree. Lastly, CARMA
sorts all evacuees based on their estimated shortest path distance from
the shelter in reverse order. This way, the furthest evacuee will be proc-
essed next by CASPER. Algorithm 2 outlines how CARMA works.

K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40 33

Road
Network

Kt

N
Linear
Evacuees
Approach
—__*%J
 EEEE— : a
Shelters | CASPER | =
/ﬁ\ Routes
F 3
) ;
A 4
Traffic ~ CARMA
Model QOW
“ a
s

Process

1) CASPERreadsin all the inputs. They are
accessible by CARMA as well.

Evacuation

57 CARMA builds a graph and generates the
heuristics from the roads.

37 Whenever the graph needs to be
refreshed CASPER will be paused and
CARMA rebuilds the graph.

21 The back and forth process between
CASPER and CARMA continues until no
evacuees are left. Evacuation routes are
then returned.

Fig. 2. Static Evacuation Router architecture. This diagram demonstrates the major steps of the routing process.

Algorithm 2. CARMA (short version)

Input: G, S, t, T

1. Build the shortest path tree: SPT « BuildSPT(G, t)

2. vvE€V:h(v) < distances(SPT, v, t)

3. SortS (evacuees) descending based on distance to shelter: distance(SPT, s, t), s € S
Output: heuristics

There are two advantages in running CARMA multiple times during the
evacuation routing process: (1) it rebuilds the graph heuristics which im-
proves the overall running time; and (2) it re-orders evacuees based on
their distance to shelters. Conceptually speaking, rebuilding the heuristic
values is like pre-paying for the routing costs in one batch. This is why run-
ning CARMA statistically helps with the overall running time. Sorting evac-
uees often helps with overall evacuation egress time. One of the key
challenges with evacuation routing is the combinatorial effect of these
routes on each other. Every time a route is reserved it affects the travel
time of other routes because it changes the car density on the graph. This
combinatorial effect makes it very difficult to solve the problem optimally.

3.4. Dynamic shortest path tree

As discussed earlier, CARMA is responsible for building and maintain-
ing an SPT. CASPER uses these heuristic values, h(v), to find evacuation
routes faster. The standard way to regenerate these values is to build
the SPT from scratch but this is going to be slow. In this section we dis-
cuss an alternative method to refresh the outdated heuristics.

The majority of the computational work in CARMA is building the
SPT. This step is relatively time consuming. It is also repetitive as not all
parts of the graph are always affected. Usually about 20% of the edges
are affected after a few route reservations. Therefore, the new SPT is
going to mostly look like the old one. This problem is called the dynamic
shortest path tree (DSPT) in the computer science literature. The algo-
rithms that update the tree in the case of an increased cost are called
semi-dynamic and algorithms that can update the tree whether the
cost is increased or decreased are called fully-dynamic.

Ramalingam and Reps (1996) proposed a fully dynamic SPT incremen-
tal algorithm that can handle edge weight updates. For each graph vertex
they maintain a list of distances-to-source based on all outgoing edges.
After every edge weight update, the distances are updated incrementally
until the SP tree is re-constructed. Frigioni et al. (Frigioni, loffreda, Nanni,
& Pasquale, 1998; Frigioni, Marchetti-Spaccamela, & Nanni, 1998; Frigioni,
Marchetti-Spaccamela, & Nanni, 2000) presented fully dynamic and
semi-dynamic SPT algorithms along with their theoretical proofs. Their re-
cent work, FMN, shows that SP trees can be maintained in O(logn) time for
a group of special graphs and in O(Vm logn) time for general graphs. The

reported complexities are per output update. They have also showed that
if insertions or deletions of edges are allowed, then similar amortized
bounds hold. In reported experimental results, it has been shown that
while FMN has a lower time complexity, it is outperformed in most cases
by Ramalingam and Reps's algorithm. Chan and Yang (2009) presented
an in-depth review of fully- and semi-dynamic SPT algorithms and com-
pared their running times. They also improved an existing dynamic algo-
rithm, BallString (Narvéaez, Siu, & Tzeng, 2001), and showed that the
corrected version (MBallString) outperforms other DSPT algorithms.

We used the MBallString algorithm with some minor modifications
because it provided a better fit with our GIS setup. CARMA initially gets
all the changed edges (DE) with their new costs. Then using the old tree,
it finds all the locally affected vertices of these edges. The locally affected
vertices (DV) are vertices with shortest paths that have likely changed.
In other words, the path from a locally affected vertex to the tree root
contains at least one dirty edge. The locally affected vertices are referred
to as dirty and other vertices as clean here. All dirty vertices are removed
from the tree. Next we look for dirty vertices that have at least one clean
adjacent vertex. These are called boundary vertices (BV). We enqueue
all boundary vertices to a priority queue. Note that leaf vertices are
clean otherwise they must have been removed from the tree. The re-
mainder is very similar to the original SPT algorithm. We dequeue a ver-
tex, process its adjacent vertices, and continue until the missing parts of
the SPT are rediscovered. We generally do not need to enqueue clean
vertices unless we find a lower cost for them than the one in the original
SPT. Algorithm 3 outlines the fully-dynamic SPT implementation.

Algorithm 3. Fully-dynamic SPT

Input: G, SPT, T
DE « ExtractDirtyEdges(G), DE c E
. DV « FindLocallyAffected(SPT, DE), DV c V
. SPT’ « Clone(SPT)
SPT’ « RemoveVertices(SPT’, DV)
BV « FindBoundaryVertices(DV, SPT"), BV ¢ DV
. PQ: create priority queue
For each boundary vertex, we find the shortest distance to root from adjacent clean vertex.
This shortest distance is used as the vertex priority.
7. Vv € BV: Enqueue(PQ, v, distances(SPT, v, t))
8. While PQ # ¢ {
8.1. (v, dist) « Dequeue(PQ)
8.2. SPT « SPT + {v}
8.3. Vu € Adjacent(reverse of G, v), e = (u,v) €E {
8.3.1. newdist « dist + costT,gC(e)

oumawn e

First we check if a fully-dynamic tree reconstruction is needed. If a better cost
for an existing vertex is found then we have to enqueue it.
8.3.2. Ifu € SPT’ AND newdist < distanceT(SPT, u, t) then

8.3.2.1. SPT « SPT' - {u}
8.3.2.2. Enqueue(PQ, u, newdist)
8.3.3. Ifu & SPT then EnqueueOrUpdate(PQ, u, newdist)
84. }
9. }
Output: SPT’

34 K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40

If there is at least one edge where the cost is decreased, then the fully-
dynamic SPT algorithm is utilized; otherwise, the semi-dynamic version
is used. The two DSPT algorithms only differ in vertex rediscovery (Algo-
rithm 3, line 8.3.2). In our experiments with different DSPT algorithms,
this hybrid implementation outperformed static SPT in all cases. DSPT
will be as slow as static SPT once we have more dirty vertices than
clean ones.

3.5. Iterative routing

In the previous section, we have shown how a DSPT algorithm can
improve CASPER running time. In this section we focus on improving
final evacuation egress time. As discussed earlier, the evacuation routing
problem is fundamentally a difficult problem because of the combinato-
rial effect of evacuation routes on one another.

While it is possible to improve CASPER's evacuation egress time with
linear or dynamic programing, such designs will not be scalable and
hence not useful for a realistic scenario. At the same time the current
greedy approach is not providing us with any other option to marginally
improve the final egress time. Therefore, we decided to study iterative
algorithms. Minton, Johnston, Philips, and Laird (1992) proposed a heu-
ristic solution to the satisfaction problem that is faster than a simple
backtracking algorithm. It starts with a random assignment for all vari-
ables in the satisfaction problem. Then a repair method is iteratively ap-
plied until an acceptable solution is found. The repair method follows a
heuristic: at each repair step it minimizes the conflict among individual
variables. They showed that this conflict-minimizing heuristic is signif-
icantly better than previous approaches, including backtracking. The
evacuation routing problem is not a satisfaction problem and the idea
of a conflict is not clear but these are not fundamental differences.

In another work, Li, Zhu, Li, Wu, and Zhang (2015) proposed a novel
building evacuation algorithm based on game theory and Monte Carlo
optimization. They modeled the building evacuation as an n-person
non-cooperative game. First, the distance to each exit is calculated for
all rooms. Then, the payoff costs for individuals are calculated based on
corridor congestion. Next, they iteratively assign evacuees to exit routes
until the system reaches the Nash equilibrium. This algorithm requires
many calculations on multiple paths and hence, it is not immediately
scalable to our urban evacuation problem. We hypothesized that the
idea of competing evacuees in a building evacuation is similar to conflict-
ing variables in a satisfaction problem and can be utilized for an urban
evacuation problem.

Before we lay out the iterative design, we need a few more defini-
tions. First, we need a definition for two conflicting or competing
paths. Two paths that share many edges indicates that they compete
over the same region of the graph. This kind of competition adds to the
complexity of the evacuation problem. Therefore, the conflict of two
paths is defined according to how much they overlap with each other.
The overlap is calculated based on the cost of shared edges between
the two paths (Eq. (9)). Our experiments showed that a 40% overlap is
a good indication that two paths are conflicting. We also learned from
the experiments that certain paths do not have the potential to be im-
proved. We identify these paths by comparing the final path cost, the
cost immediately after reservation, and the cost predicted by the SPT. If
any of these differences for a path is >15% of the final egress time, then
this path can likely be improved. Egs. (9) and (10) show how we calcu-
late the disadvantage and conflict ratios.

Conflicty (Py, Py) = Zecrirs (C0Strac(e) / ,gc: cte (10)

2eer, (CDSfT gc(e))

Disadvantage - (EvcTime, Ps)

 max(ReserveCostr (Ps)—Distancer (SPT, s, t), Costr(Ps)—ReserveCostr(Ps))
N EvcTime

(11)

Algorithm 4 outlines the iterative approach for solving the evacuation
routing problem. For the first round, the greedy CASPER algorithm finds
evacuation routes for all evacuees. We then look for paths with a disad-
vantage and select the corresponding evacuees. On the next iteration,
greedy CASPER finds paths for the selected evacuees and merges new re-
sults with the non-selected paths. The iteration continues until the
egress time can no longer be decreased.

Algorithm 4. Iterative CASPER

Input: G, S, t, T

1. S’ < Clone(S)

2. Peg

3. Global variables: EvcTime « oo, MaxSize « |S|

4. Constants: ItrRatio « 0.6, DisadvantageRatio « 0.15, ConflictRatio « 0.4
After initializing some variables, we start the iteration loop. At each step we call the greedy
CASPER with the selected evacuees.

5. WhileS # ¢ {
5.1. New® « GreedyCASPER+(G, S', t)

5.2. PrevEvcTime « EvcTime
5.3. EvcTime < max { costy(Pg) | Pg € P U New® }
5.4. If EvcTime < PrevEvcTime then P « 2P U New® ELSE terminate iteration
5.5. MaxSize < MaxSize * ItrRatio
56.S«¢
At this step we select the evacuees that can potentially be improved
5.7. Vs€S,3P € P {

5.7.1. If Disadvantage(EvcTime, Pg) > DisadvantageRatio AND |S'| < MaxSize {

If the difference between predicted cost, reserved cost, and final cost for a path is
larger than 15% of EvcTime then it’s selected for iteration. Paths that overlap with
it by more than 40% are selected too.
5.7.1.1. 8"« U {s} U {s2#s| Conflicty(Pg, Psz) > ConflictRatio }
5.7.2. }
58.}
5.9. Sort S’ by costT(Psz)

The evacuee with the longest path will be processed first in the next iteration
6. }
Output: P

Atline 5.5 an upper bound is set for the number of selected evacuees.
This bound is exponentially decreased at every step by a factor <1. This
guarantees that the algorithm terminates in at most O(|S|) operations,
the same as the greedy CASPER.

3.6. Dynamic evacuation routing

In the previous sections, a new algorithm, called DCASPER, was
outlined which is flexible to a changing environment. The new DSPT im-
plementation enables CARMA to quickly update its internal data struc-
ture after any kind of road network change. The iterative design made
the entire system a modular algorithm. You can feed in a set of evacua-
tion routes and have the iterative CASPER improve the routes. The same
iterative algorithm can also be used to improve routes after a change in
the road network.

Fig. 3 demonstrates how DCASPER solves the dynamic evacuation
routing problem with a modular design. The beginning steps of DCASPER
are similar to the static solution. DCASPER solves the problem like any
static evacuation routing problem and outputs the routes. Next, it reads
in the first set of network changes. For example, one network change
could be that 20 min after the evacuation is started, a portion of a free-
way is modified to allow a higher speed limit but some of its ramps are
now closed. To model this, we recalculate the cost of edges associated
with the freeway. We also set the edge cost of closed ramps to infinity.
The new information is first passed to CARMA to update the graph.
Next, we move all evacuees on their paths for 20 min. Lastly, we invali-
date all paths that cross the closed ramps. The remaining paths are fed
back to DCASPER to be reprocessed.

As DCASPER is processing each change, it also needs to track evacuee
locations and their partial paths. It needs to know if an evacuee has al-
ready reached a shelter, is trapped in a disconnected sub-graph (strand-
ed), or still needs to be routed at the next step. Lastly, it is necessary to
calculate the final egress times based on correct edge costs and traffic
densities at the appropriate interval. To be able to compare DCASPER
with a baseline, we have created four different variations of the
algorithm:

K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40 35

DisableDCASPER: This version assumes that there are no network
changes. It behaves like the static CASPER algorithm. The results will
give us an understanding of how much the network dynamicity is af-
fecting the evacuation egress time and the algorithm running time.
SimpleDCASPER: Similar to DisableDCASPER but it assumes all net-
work changes occur at the beginning and will continue to exist forever.
By doing so, we are effectively giving SimpleDCASPER some additional
knowledge about the future of the road network. Since this informa-
tion is known at the beginning, SimpleDCASPER can avoid all of them
at once. There is no need to iterate over all network intervals. The re-
sults from this version will help us understand the best possible sce-
nario achievable with a static algorithm.

FullDCASPER: This version respects all network changes and their start
times. After every network change, it deletes the graph, heuristics, and
paths and then runs iterative CASPER from scratch. Since this version
does not rely on existing paths, it serves as our naive approach.
SmartDCASPER: This is the version we have discussed in this section. It
can quickly update its internal data structure and then it reprocesses
the affected paths. The main advantage of SmartDCASPER over
FullDCASPER is that it only needs to focus on updating a small set of
paths. Therefore, it can potentially produce better evacuation routes
with less computation.

DCASPER is a complete sub-optimal algorithm. It can find a path for
each evacuee while satisfying all network changes if such a path exists.
However, it is not guaranteed that the final evacuation plan would have
the lowest possible egress time.

3.7. Complexity analysis

We already know that the static greedy CASPER has a running time
similar to the Dijkstra algorithm: O(|S| x (|E| + |V|log(]V]))). Adding
DSPT to CARMA does not change its computational complexity. In the
worst case scenario, the entire tree still needs to be traversed, which is
the same as running a single Dijkstra. Even though the iterative design
can slow down CASPER, it does not change its computational complexity
either. Since the ItrRatio is <1, at each iteration, not all evacuees are proc-
essed. More specifically, at each iteration we have:

#of processed evacuees at iteration i = |S| x ItrRatio’, ItrRatio<1 (12)

fs(s5)

G . . 1
Total possible iterarions : |S| x ItrRatio™ < 1=>imay > Tog(ltrRatio) = 10g}Ratio (ﬁ)

(13)
imax .
Total processed paths = Z\S| x ItrRatio'
i=0
i 1 11
_ s/ ltrRatio™ —pop 0 |« SI_ItrRatio _ |S|—ltrRatio
- 1— 1 - 1— 1 1—ItrRatio
ItrRatio ItrRatio
=0(s) (14)

The total number of processed paths varies linearly with the total
number of evacuees (Eq. (13)). Hence, the iterative CASPER has the
same complexity as the greedy static CASPER. To solve the dynamic evac-
uation problem, DCASPER needs to adjust routes every time there is a
new dynamic change. We have a total of | GC| changes in the road net-
work and therefore can express DCASPER complexity as:

DCASPER complexity = O(|GC| x [S| x (|E| + |V| log(|V]))) (15)

4. Results

The new algorithm was compared with static CASPER in terms of al-
gorithm running times and evacuation egress times. The evacuation pro-
gram is implemented with C++ as a single-threaded plug-in for ArcGIS
Desktop® (Shahabi, 2015a). The source code is also publicly available
(Shahabi, 2015b). Everything from loading data, storage, accessing the
transportation network, and visualization is abstracted by the ArcGIS
API® (Esri, 2015). The implementation supports simple turn restrictions,
multiple destination points, different impedance metrics (time, length,
etc.), multiple traffic models, timed dynamic network changes, and shel-
ter capacity. All the experiments were performed on a dedicated 64-bit
Microsoft Windows® 10 machine with Intel i5 CPU (1.9 GHz) and 8 GB
of memory. The few seconds taken to load inputs, visualize, and store
the results are excluded.

Routes

CASPER evaluates the previous routes

Modular Approach
Evacuees
! 8 | z Evacuation
CASPER CASPER e ———
Shelters |
. 3 il
5
CARMA CARMA
Traffic 7 —
Model {Oy 3
| S —— - ~
Road =i jth Road i,
e ! L)
Network (t,) Ex‘f" "< Change > | Network (t) "\f{
~ J
Process
1) CASPERreadsin all the inputs. 4) Atthe end, all routers will be G

evaluated. Then the CASPER process is
repeated for the long routes.

51 CARMA builds a graph and generates
the heuristics from the road network.

5y Anew changein the networkis 7
detected. CARMA readsin the
previous heuristics and applies the

31 To refresh the heuristics, CASPER is

paused and CARMA runs again.
change.

and re-processes those affected by the
network change.

If there are no more network changes,
and routes can no longer be improved,
then CASPER returns the final result.

Fig. 3. DCASPER architecture. This diagram demonstrates how a modular design improved the original static algorithm in order to solve the dynamic evacuation routing problem.

36 K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40

4.1. SoCal fire setup

We used the southern California wildfire records from 2008 and 2009
to create eight different wildfire polygons that served as the evacuation
zones. These polygons represented the extent of the fires. The schools re-
ported in the US public schools layer are used as shelters for the experi-
ments that follow (USC Spatial Sciences Institute, 2014). For each
experiment, all schools that are outside the evacuation zone and at
least 10 km away from it, are considered a shelter. For each wildfire poly-
gon, we also created another small polygon to represent the dynamic
changes to the road network. All roads inside a dynamic change polygon
were set to get fully or partially blocked 10-30 min after the evacuation
starts. To select the dynamic change areas, we picked main road seg-
ments that are useful for evacuation. However, we have avoided creating
blockages on major roads as that would create major cuts in the network
at which point evacuation would be near impossible.

Fig. 4 visualizes both types of polygons for each county along with
public schools. We used the complete southern California road network
to build the graph. The road network includes highways and local roads.
The resulting graph had about 750,000 vertices and 1.8 million edges.

The evacuees were all of the people who lived inside each of the wild-
fire polygons. We used the 2010 Census Block Group dataset to get the
locations and population counts for the evacuees. Commonly, wildfires
occur in rural areas where population density is low, but this would
not allow us to test the DCASPER scalability and performance. We
added three other urban fire polygons in highly populated areas: the
Los Angeles, Santa Ana, and San Diego downtown areas. Fig. 5 visualizes
the evacuees and shelters for the Santa Ana scenario. Finally, we merged
smaller areas to generate even larger evacuation scenarios. In total we
generated 13 evacuation scenarios that cover a vast geographical area
as well as different population densities, road network structures, and
dynamicity. Table 2 lists these 13 scenarios.

Table 2 is split into two parts: urban and rural scenarios. Each part is
sorted according to fire polygon size. For each scenario, the evacuating
neighborhoods are what the routing algorithm receives as S. The ‘vehicle
count’ gives us an idea of how much traffic this scenario would generate.
For the rural areas we set the dynamic polygons to permanently block
the intersecting roads. As an example, a dynamic polygon is blocking
19 km of road 10 min after the evacuation starts and continues until in-
finity for the Santa Barbara (SB) wildfire scenario. Depending on the
setup, some of these scenarios produce unusually high evacuation egress
times due to network saturation. Therefore we excluded them from
measurements.

4.2. DSPT implementation

We next present the comparison between the two SPT algorithms.
Aside from the SPT implementation, we can also change the invalidated
heuristic ratio which affects the number of times CARMA is updating the
tree in one scenario. The lower the ratio, the greater the number of tree
updates. We can also choose to sort evacuees after each DSPT run or
only once before the initial CARMA loop. In total, these options gave us
six different setups (Table 3). The Dspt prefix in the setup name indicates
the dynamic SPT implementation and the CDspt prefix indicates dynamic
SPT implementation with continuous evacuee sorting. The COX prefix
specifies the invalidated heuristic ratio that was used. For the sake of
this comparison, we ignored all dynamic polygons and completed just
one iteration (greedy CASPER) to solve the static problem.

In this experiment, the average of the running and final egress times
were calculated over 25 test cases. They consist of all fire scenarios each
with two different initial car densities. The EvcTime improvement is cal-
culated as the percentage of improvement one setup has over the one
with the worst egress time in each scenario. We used the same calcula-
tion method for the speed up percentage. As can be seen from Table 3,
CDsptCASPER has the best combined running time speed up. The
CDsptCASPER_CO02 variation has an average 20.3% speed up compared

to the slowest setup. Since CDspt sorts evacuees every time, it ends up
with a relatively smaller tree; hence, it is slightly faster than Dspt.

4.3. Iterative design

In order to test the iterative CASPER, we started with all 13 fire cases
and three different initial car densities. We then created 10 different var-
iations of CASPER based on the invalidated heuristic ratio, SPT imple-
mentation, evacuee sorting policy, and iterative design. The resulting
340 experiments have been measured similar to previous experiments.
Table 4 summarizes the measured average improvements and speed
ups. The Itr and Cltr prefixes indicate the iterative design and the Cltr pre-
fix also specifies the continuous evacuee sort policy. Both iterative CAS-
PER implementations have the faster DSPT implementation embedded
in them.

There is a clear distinction between the iterative CASPER and the non-
iterative CASPER in egress time. As predicted, iterative CASPER is slower
by a constant factor. The measured average running time is about 20%
slower than that of the non-iterative CASPER (Table 4, column 7). Both
[trCASPER and CItrCASPER performed well with different evacuation sce-
narios and created relatively better routes. On average, [trCASPER im-
proved the EvcTime by 8%. Another interesting observation was that
continuously sorting evacuees makes CASPER, both iterative and non-it-
erative, run slightly faster. Overall, the choice comes down to algorithm
speed verses route quality.

4.4. Dynamic environment

Thus far we have ignored the dynamic polygons in our experiments.
We present the results for the dynamic evacuation routing problem here.
As defined earlier, there are four different variations of DCASPER, 13 fire
cases, and three different initial car densities. After removing a few very
fast scenarios, we end up with 154 experiments. Table 5 presents the av-
erage performance and quality of the said experiments.

We have selected slightly higher initial car densities compared to the
iterative experiment for two reasons: (1) to avoid running the same ex-
periments twice; and (2) to generate scenarios with relatively lower traf-
fic congestion. High traffic congestion forces DCASPER to always start
from scratch after every network change. This will not allow us to
study the performance of different DCASPER variations. For the same rea-
son, we have also created small dynamic polygons because we wanted
only a small portion of the graph to change. Another advantage of having
small dynamic polygons is that we will have less stranded evacuees.

DisableDCASPER is the only setup that stranded no evacuees because it
ignored the dynamic polygons. This is an entirely unrealistic dynamic
solver that we made for comparative purposes (i.e. as ground truth). For
the same reason DisableDCASPER is the fastest algorithm. SimpleDCASPER
is also an unrealistic solver because it knows about all the dynamic poly-
gons in advance. This gives it an unfair advantage over the other setups.
Because of this extra knowledge, most evacuees will not get stranded as
they follow their paths. Both DisableDCASPER and SimpleDCASPER have
relatively low running times because they do not need to dynamically ad-
just the evacuation routes after each dynamic change.

SmartDCASPER and FullDCASPER are realistic solvers. They both con-
sider all dynamic polygons and have to adjust their routes after the net-
work changes are detected. The experiments do confirm that
SmartDCASPER has indeed lower running time than FullDCASPER
(Table 5, Column 6). These experiments also show that SmartDCASPER
produced better evacuation plans (Table 5, Column 4). As evacuees are
moving toward shelters, there are fewer unique routes left for them.
Fewer unique routes means that the combinatorial characteristic of the
problem is intensified. Therefore, the problem is harder to optimize.
Since FullDCASPER solves the problem from scratch after every dynamic
event, it may not find the same good routes it found in previous iterations.

In order to better compare different DCASPER methods, we can look
at the affected neighborhoods. For example, Fig. 6 shows how one

K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40 37

Inyo, California

]

- *

L &T‘T:f-, California
e

.

~y

San"}Luis Obispo, California

. . g, -
\@nterey, 'CalifM,’ Califorijia - 'INa_'re, CaliforM

Legend

Public Schools (5,600) ZoneType
\:l County (15) - Dynamic Change (10)
|:| Evacuation Zone (11)

Fig. 4. Map of southern California with public school locations and realistic wildfire evacuation zones.

neighborhood in Santa Barbara, CA would be evacuated with different
DCASPER methods. DisableDCASPER ignores road restrictions so it drives
the neighborhood through the dynamic blockage zone. SimpleDCASPER
knows about the blockage in advance and generates a route that goes
around the blockage toward the same public school. SmartDCASPER,
however, does not know about the blockage until it happens. Therefore,
it has to correct the route midway through the evacuation. It initially
goes toward the same public school. After the blockage, it makes a U-
turn and moves toward another public school to the west. FullDCASPER
takes on a similar maneuver as well.

5. Conclusions
The rapid growth of the human population and its changing distri-

bution on Earth has placed more and more people in harm's way over
time. Some of this harm can be traced to natural disasters such as

earthquakes, floods and wildfire, some can be traced to technological
failures such as nuclear accidents, and still other sources to the threat
of war and other forms of human conflict. One possible strategy is to
evacuate people and move them out of harm's way when one or more
of these events threatens to unfold and more often than not, this usually
entails moving people quickly with the help of various forms of motor-
ized transport. The size and character of the disaster as well as the dis-
tribution of infrastructure and other facilities and people will have a
large impact on the success of any evacuation and therefore the number
of casualties. The size and capacity of the road network will loom large
in both the planning and execution of an evacuation. In an earlier
paper, the value of using the CASPER was demonstrated by modeling
the ability of local road networks to move residents to safety when
some form of disaster threatens.

We were enthused when we learnt that various public safety profes-
sionals had adopted and used the tool to evaluate how difficult it would

RTINS S
ﬁglversmm% California &

Legend
\ Public Schools

% SantaAna Evacuees

ZoneType

- Dynamic Change]

& &
,&A@ &

1
i County

m_._

LS

Fig. 5. Evacuation map for Santa Ana Downtown. All public schools that are at least 10 km away from fire are selected as shelters.

38 K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40

Table 2
All wildfire scenarios along with the selected populations, shelters, and dynamic changes.

Scenario name Fire

Shelter count

Dynamic change

Area (km?) Neighborhood count Vehicle count Area (km?) Type Effective time (min) Road length (Km)
LADT? 243 794 285,978 4415 25 ¥4 Lanes 15-300 30
SantaAnaDT 282 554 232,757 4737 2.1 ¥4 Lanes 20-300 27
SDDT 359 546 201,536 4909 14.1 ¥4 Lanes 20-300 62
AILDT 884 1894 720,271 4415 18.6 V5 Lanes 15,20-300 119
SB 233 76 24,724 5284 2.0 Road Block 10— 19
SB_Ventura 608 105 37,837 5175 17.2 Road Block 10- 82
Riverside 2069 252 123,122 5066 23.1 Road Block 20- 164
LA 2364 571 210,254 4563 7.7 Road Block 10— 88
SD 3002 109 48,364 5028 30.1 Road Block 10,15- 305
LowerSoCal 5071 361 171,486 4761 53.2 Road Block 10— 470
Kern_SB 7939 93 28,971 5271 29.7 Road Block 10-o 26
UpperSoCal 10,677 693 252,338 4392 52.6 Road Block 10- 177
All_Rural 15,748 1054 423,824 3820 105.7 Road Block 10,15,20- 647

@ DT stands for downtown and refers to densely populated areas as opposed to rural areas.

Table 3
Running time and evacuation improvement for different SPT implementations ordered by
average running time.

Setup Average Average Running time Average
memory EvcTime speed up (%) running time
usage (MB) 1ronprovement Mean Std dev (min)

(%)

DsptCASPER_C02 1437.36 1.21 19.96 18.7 6.893

CDsptCASPER_C01 1784.80 1.55 13.72 158 6.901

CDsptCASPER_C02 1565.16 1.21 20.29 185 6.943

DsptCASPER_CO01 1564.36 1.22 1235 144 7.006

CASPER_CO01 1649.00 1.22 778 111 7.349

CASPER_C02 1569.84 1.21 1841 187 7.785

Table 4

Summery of running time and evacuation improvement between greedy and iterative
CASPER.

Setup Average EvcTime Average Average
memory improvement (%) running time running
usage (MB) Mean Stddev Max speed up (%) time (min)

CDsptCASPER 1686.54 199 456 21.65 44.69 8.136

DsptCASPER 1533.82 322 543 21.74 44.99 8.328

CASPER 1604.59 322 543 21.74 41.04 9.089

CItrCASPER 1697.76 812 1626 9596 20.72 11.919

I1trCASPER 1648.47 829 1624 9595 20.25 12.651

be to evacuate all of the residents threatened by a large disaster, such as a
regional flood in the Sacramento-San Joaquin Delta for example. When
used as a planning tool, CASPER can predict: (1) whether or not a disaster
scenario is likely to cause traffic congestion that exceeds the capacity of
the road network; (2) where these so-called “choke” points are likely
to occur if the capacity of the network is exceeded; and (3) reasonable
evacuation routes as long as the network is not saturated. The first out-
come is fundamental and depending on the answer to this question,
the second or third outcomes will provide public officials and emergency
personnel with valuable information about the challenges that are likely
to occur if such a disaster actually occurred.

Table 5

The opportunities for coping with a saturated network (as in option
(2) above) might include building new infrastructure to increase the ca-
pacity at predicted choke points or, in the case of certain kinds of events
like regional floods that might unfold over a number of days, exploring
ways to reduce traffic volumes, such as would happen if the evacuation
could be accomplished in stages, so that these choke points are averted
altogether. However, these outcomes were not considered for the work
at hand and are therefore beyond the scope of this paper.

The work in this paper is focused on the cases in which the road infra-
structure is such that we can plan an evacuation (i.e., as envisaged in op-
tion (3) above) and the shortcomings that were left unattended by the
static solution. Indeed, the current work endeavored to solve the most
substantial shortcoming with a static solution like CASPER, that it cannot
capture and use knowledge of the disaster and/or the condition of the in-
frastructure as a disaster event unfolds. We should be able to take ac-
count of dynamic changes to the road network that might materialize
when, for example, a bridge or overpass is taken out, in an earthquake
or flood scenario and to evaluate the impact this likely to have on the ef-
ficacy of various evacuation scenarios.

We therefore have described the dynamic urban evacuation routing
problem in this article and provided several possible solutions which
were evaluated using a “worst case” wildfire disaster in southern Califor-
nia. The results of these experiments were conducted in two stages.

We first presented two classes of algorithms - the first using an
iterative design and the second using a dynamic shortest path tree
(DSPT) - to solve the static evacuation routing problem. DsptCASPER
produced evacuation routes with similar quality faster than the orig-
inal CASPER. Also, the ItrCASPER iterative design that produced
routes that were about 8% better but needed more computation
time compared to the fully dynamic DsptCASPER setup. We therefore
recommend using iterative CASPER as it would produce better
routes, but if running time were a priority, then DsptCASPER would
give the fastest computation time.

We next turned our attention to the dynamic changes to the road net-
work and compared the performance of four possible implementations
of our new DCASPER solution. Among those, SmartDCASPER performed
well in terms of both running and evacuation time. It will continue to

Running time and evacuation improvement for all four different DCASPER implementations.

Setup Average memory Average EvcTime Average Average running Average running Average no. of
usage (MB) improvement (%) EvcTime time speed up (%) time (min) stranded evacuee

SmartDCASPER 1871.89 12.69 130.07 12.56 6.921 7.21

DisDCASPER 1668.97 9.65 138.41 41.71 4.467 0.00

SimpleDCASPER 1568.55 7.01 147.03 45.82 4.165 0.79

FullDCASPER 1898.26 6.59 417.84 6.50 7.442 7.36

K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40 39

30km
Legend 5
bbb SimpleDCASPER Route (70min) Shelters X
— DisableDCASPER Route (68min) % Evacuees %
e SMartDCASPER Route (63min) - Dynamic Blockage ¢ % 7
start point
1 05 0 i 2Km Service Layer Credits: Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China

(Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC, © OpenStreetMap contributors, and the GIS User Community

Fig. 6. Map of DCASPER evacuation of Santa Barbara, CA for one particular neighborhood. The SmartDCASPER route had to make a U-turn when the dynamic road blockage occurred. All

three routes are drawn with a small offset from the road to avoid overlaps.

be a feasible solution so long as there are limited and infrequent changes
to the network and the shelter locations remain unchanged.

Taken as a whole, the work shows that the proposed algorithms pro-
vide scalable solutions for the evacuation routing problem in a dynamic
environment and that the results could be used to evaluate the impact of
various infrastructure changes as part of the evacuation planning process
that hopefully precedes disasters in high risk regions of the world.

Acknowledgments

This research has been funded in part by USC Spatial Sciences Insti-
tute (USC SSI). Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the USC SSI. The authors would also like
to thank the engineering team at Wood Rodgers Inc. for their helpful in-
sights throughout the implementation of this research. For our experi-
ments we used 2010 Census block group demographic data. The
transportation network dataset was created from NAVTEQ NAVSTREETS
Street Data 2007 with permission from The North American Association
of Central Cancer Registries (NAACCR).

References

Bayram, V., Tansel, B.C., & Yaman, H. (2015). Compromising system and user interests in
shelter location and evacuation planning. Transportation Research Part B:
Methodological, 72, 146-163. http://dx.doi.org/10.1016/j.trb.2014.11.010.

Bhaduri, B., Bright, E., Coleman, P., & Dobson,]. (2002). LandScan: Locating people is what
matters. Geoinformatics, 5, 34-37.

Chan, E. P. F,, & Yang, Y. (2009). Shortest path tree computation in dynamic graphs. [EEE
Transactions on Computers, 58, 541-557. http://dx.doi.org/10.1109/TC.2008.198.

Chiu, Y. -C,, Zheng, H., Villalobos,]., & Gautam, B. (2007). Modeling no-notice mass evac-
uation using a dynamic traffic flow optimization model. IIE Transactions, 39, 83-94.
http://dx.doi.org/10.1080/07408170600946473.

Church, R, & Cova, T.]. (2000). Mapping evacuation risk on transportation networks using
a spatial optimization model. Transportation Research Part C Emerging Technologies, 8,
321-336. http://dx.doi.org/10.1016/S0968-090X(00)00019-X.

Cova, T.], Goodchild, M. F, Maguire, D.], & David, W. R. (1999). GIS in emergency manage-
ment. In P. A. Longley (Ed.), Geographical information systems: Principles, techniques, ap-
plications, and management (pp. 845-858). New York: John Wiley & Sons.

Esri (2015). ArcGIS for desktop [WWW document]. URL. http://www.esri.com/software/
arcgis/arcgis-for-desktop, Accessed date: 17 June 2015.

Frigioni, D., loffreda, M., Nanni, U., & Pasquale, G. (1998). Experimental analysis of dynamic
algorithms for the single. ACM J. Exp. Algorithmics, 3. http://dx.doi.org/10.1145/297096.
297147.

Frigioni, D., Marchetti-Spaccamela, A., & Nanni, U. (1998). Semidynamic algorithms for
maintaining single-source shortest path trees. Algorithmica, 22, 250-274. http://dx.
doi.org/10.1007/PL00009224.

Frigioni, D., Marchetti-Spaccamela, A., & Nanni, U. (2000). Fully dynamic algorithms for
maintaining shortest paths trees. Journal of Algorithms, 34, 251-281. http://dx.doi.
org/10.1006/jagm.1999.1048.

Greenberg, H. (1959). An analysis of traffic flow. Operations Research, 7, 79-85. http://dx.
doi.org/10.1287/opre.7.1.79.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4, 100-107. http://dx.doi.
0org/10.1109/TSSC.1968.300136.

Helbing, D. (2001). Traffic and related self-driven many-particle systems. Reviews of
Modern Physics, 73, 1067-1141. http://dx.doi.org/10.1103/RevModPhys.73.1067.
Holden, H., & Risebro, N. H. (1995). A mathematical model of traffic flow on a network of
unidirectional roads. SIAM Journal on Mathematical Analysis, 26, 999-1017. http://dx.

doi.org/10.1137/S0036141093243289.

Kim, S., George, B., & Shekhar, S. (2007). Evacuation route planning: Scalable heuristics
(pp. 1)Proceedings of the 15th annual ACM international symposium on advances
in geographic information systems. New York, New York, USA: ACM Press. http://
dx.doi.org/10.1145/1341012.1341039.

Kobayashi, T., Medina, R. M., & Cova, T.]. (2011). Visualizing diurnal population
change in urban areas for emergency management. The Professional Geographer,
63,113-130.

Kwon, E., & Pitt, S. (2005). Evaluation of emergency evacuation strategies for downtown
event traffic using a dynamic network model. Journal of the Transportation Research
Board, 1922, 149-155. http://dx.doi.org/10.3141/1922-19.

Leutzbach, W. (1988). Introduction to the theory of traffic flow. Berlin, Heidelberg:
Springer Berlin Heidelberghttp://dx.doi.org/10.1007/978-3-642-61353-1.

Li, W., Zhu, ., Li, H., Wy, Q., & Zhang, L. (2015). A game theory based on Monte Carlo anal-
ysis for optimizing evacuation routing in complex scenes. Mathematical Problems in
Engineering, 2015, 1-11. http://dx.doi.org/10.1155/2015/292093.

Lu, Q., George, B., & Shekhar, S. (2005). Capacity constrained routing algorithms for evac-
uation planning: A summary of results. In C. Bauzer Medeiros, M.]. Egenhofer, & E.
Bertino (Eds.), Advances in spatial and temporal databases, lecture notes in computer
science (pp. 291-307). Berlin Heidelberg, Berlin, Heidelberg: Springer. http://dx.doi.
org/10.1007/11535331_17.

Mahmassani, H. S., Sbayti, H., & Zhou, X. (2004). Dynasmart-p version 1.0 user's guide.
Maryl. Transp. Initiat. Coll. Park. Maryl.

Malone, S. W., Miller, C. A., & Neill, D. B. (2001). Traffic flow models and the evacuation
problem. The UMAP Journal, 22, 271-290.

Minton, S., Johnston, M. D,, Philips, A. B., & Laird, P. (1992). Minimizing conflicts: A heuristic
repair method for constraint-satisfaction and scheduling problems. Artificial
Intelligence, 58, 161-205 (10.1.1.56.6125).

Narvaez, P., Siu, K. Y., & Tzeng, H. Y. (2001). New dynamic SPT algorithm based on a ball-
and-string model. [EEE/ACM Transactions on Networking, 9, 706-718. http://dx.doi.
org/10.1109/90.974525.

Nassir, N., Hickman, M., Zheng, H., & Chiu, Y. (2014). Network flow solution method for
optimal evacuation traffic routing and signal control with nonuniform threat.
Transportation Research Board, 2459, 54-62 (10.3141.2459-07).

Pel, A. J., Bliemer, M. C.], & Hoogendoorn, S. P. (2011). A review on travel behaviour
modelling in dynamic traffic simulation models for evacuations. Transportation
(Amst)., 39, 97-123. http://dx.doi.org/10.1007/s11116-011-9320-6.

http://dx.doi.org/10.1016/j.trb.2014.11.010
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0010
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0010
http://dx.doi.org/10.1109/TC.2008.198
http://dx.doi.org/10.1080/07408170600946473
http://dx.doi.org/10.1016/S0968-090X(00)00019-X
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0030
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0030
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0030
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://dx.doi.org/10.1145/297096.297147
http://dx.doi.org/10.1145/297096.297147
http://dx.doi.org/10.1007/PL00009224
http://dx.doi.org/10.1007/PL00009224
http://dx.doi.org/10.1006/jagm.1999.1048
http://dx.doi.org/10.1006/jagm.1999.1048
http://dx.doi.org/10.1287/opre.7.1.79
http://dx.doi.org/10.1287/opre.7.1.79
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1103/RevModPhys.73.1067
http://dx.doi.org/10.1137/S0036141093243289
http://dx.doi.org/10.1137/S0036141093243289
http://dx.doi.org/10.1145/1341012.1341039
http://dx.doi.org/10.1145/1341012.1341039
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0080
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0080
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0080
http://dx.doi.org/10.3141/1922-19
http://dx.doi.org/10.1007/978-3-642-61353-1
http://dx.doi.org/10.1155/2015/292093
http://dx.doi.org/10.1007/11535331_17
http://dx.doi.org/10.1007/11535331_17
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0105
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0105
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0110
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0110
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0115
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0115
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0115
http://dx.doi.org/10.1109/90.974525
http://dx.doi.org/10.1109/90.974525
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0125
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0125
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0125
http://dx.doi.org/10.1007/s11116-011-9320-6

40 K. Shahabi, J.P. Wilson / Computers, Environment and Urban Systems 67 (2018) 29-40

Pourrahmani, E., Delavar, M. R,, Pahlavani, P., & Mostafavi, M. A. (2015). Dynamic evacu-
ation routing plan after an earthquake. Natural Hazards Review, 16, 1-8. http://dx.doi.
org/10.1061/(ASCE)NH.1527-6996.0000183.

Ramalingam, G., & Reps, T. (1996). An incremental algorithm for a generalization of the
shortest-path problem. Journal of Algorithms.

Santos, G., & Aguirre, B. E. (2004). A critical review of emergency evacuation simulation
modelsProceedings of building occupant movement during fire emergencies. Disaster
Research Center.

Shahabi, K. (2015a). CASPER for ArcGIS [WWW Document]. ArcGIS Online. URL http://
esri.com/arccasper, Accessed date: 17 June 2015.

Shahabi, K. (2015b). CASPER Source Code [WWW Document]. GitHub. URL http://github.
com/spatial-computing/CASPER, Accessed date: 17 June 2015.

Shahabi, K., & Wilson, J. P. (2014). CASPER: Intelligent capacity-aware evacuation routing.
Computers, Environment and Urban Systems, 46, 12-24. http://dx.doi.org/10.1016/j.
compenvurbsys.2014.03.004.

Smith, J. M. (1991). State-dependent queueing models in emergency evacuation net-
works. Transportation Research Part B: Methodological, 25.

Smith,]. M,, & Cruz, F. R. B. (2005). The buffer allocation problem for general finite buffer
queueing networks. IIE Transactions, 37, 343-365. http://dx.doi.org/10.1080/
07408170590916986.

Stepanov, A., & Smith,]. M. (2009). Multi-objective evacuation routing in transportation
networks. European Journal of Operational Research, 198, 435-446. http://dx.doi.org/
10.1016/.ejor.2008.08.025.

U.S. Census Bureau (2010). Census population data [WWW document]. Census. URL.
http://www.census.gov/popest/data/index.html, Accessed date: 17 June 2015.

U.S. Federal Highway Administration (2014). Delay-volume relations for travel forecast-
ing: Based on the 1985 highway capacity manual [WWW document]. URL http://
www.fhwa.dot.gov/planning/tmip/publications/other_reports/delay_volume_
relations/ch04.cfm, Accessed date: 17 June 2015.

USC Spatial Sciences Institute (2014). US public schools GIS layer [WWW document].
URL. http://gis-server-01.usc.edu:6080/arcgis/rest/services/US_Schools/MapServer/
1, Accessed date: 18 March 2017.

Xie, C, Lin, D. -Y., & Travis Waller, S. (2010). A dynamic evacuation network optimization
problem with lane reversal and crossing elimination strategies. Transportation
Research Part E-Logistics & Transportation Review, 46, 295-316. http://dx.doi.org/10.
1016/j.tre.2009.11.004.

Yang, K., Gunturi, V. M. V., & Shekhar, S. (2012). A dartboard network cut based approach
to evacuation route planning: A summary of results. Geographic Information Science, 1,
325-339.

Yi, W., & Ozdamar, L. (2007). A dynamic logistics coordination model for evacuation and
support in disaster response activities. European Journal of Operational Research, 179,
1177-1193. http://dx.doi.org/10.1016/j.ejor.2005.03.077.

Zhou, X., George, B., Kim, S., Wolff, J. M. R, Lu, Q., & Shekhar, S. (2010). Evacuation plan-
ning: A spatial network database approach. IEEE Comput. Soc., 33, 26.

http://dx.doi.org/10.1061/(ASCE)NH.1527-6996.0000183
http://dx.doi.org/10.1061/(ASCE)NH.1527-6996.0000183
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0140
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0140
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0145
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0145
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0145
http://esri.com/arccasper
http://esri.com/arccasper
http://github.com/spatial-computing/CASPER
http://github.com/spatial-computing/CASPER
http://dx.doi.org/10.1016/j.compenvurbsys.2014.03.004
http://dx.doi.org/10.1016/j.compenvurbsys.2014.03.004
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0155
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0155
http://dx.doi.org/10.1080/07408170590916986
http://dx.doi.org/10.1080/07408170590916986
http://dx.doi.org/10.1016/j.ejor.2008.08.025
http://dx.doi.org/10.1016/j.ejor.2008.08.025
http://www.census.gov/popest/data/index.html
http://www.fhwa.dot.gov/planning/tmip/publications/other_reports/delay_volume_relations/ch04.cfm
http://www.fhwa.dot.gov/planning/tmip/publications/other_reports/delay_volume_relations/ch04.cfm
http://www.fhwa.dot.gov/planning/tmip/publications/other_reports/delay_volume_relations/ch04.cfm
http://gis-server-01.usc.edu:6080/arcgis/rest/services/US_Schools/MapServer/1
http://gis-server-01.usc.edu:6080/arcgis/rest/services/US_Schools/MapServer/1
http://dx.doi.org/10.1016/j.tre.2009.11.004
http://dx.doi.org/10.1016/j.tre.2009.11.004
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0190
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0190
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0190
http://dx.doi.org/10.1016/j.ejor.2005.03.077
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0200
http://refhub.elsevier.com/S0198-9715(16)30193-4/rf0200

	Scalable evacuation routing in a dynamic environment
	1. Introduction
	1.1. Background
	1.2. Contribution

	2. Related work
	3. Method
	3.1. Problem statement
	3.2. Traffic model
	3.3. Static solution
	3.4. Dynamic shortest path tree
	3.5. Iterative routing
	3.6. Dynamic evacuation routing
	3.7. Complexity analysis

	4. Results
	4.1. SoCal fire setup
	4.2. DSPT implementation
	4.3. Iterative design
	4.4. Dynamic environment

	5. Conclusions
	section19
	Acknowledgments
	References

