

Connecting POPULATION, HEALTH, & PLACE

(with geospatial tools & data)

John P. Wilson, Ph.D.

Professor of Spatial Sciences, Sociology, Architecture, Civil & Environmental Engineering, and Computer Science

Founding Director, Spatial Sciences Institute

Visiting Professor, Chinese Academy of Sciences

Geospatial Approaches to Cancer Control Conference 12-14 September, 2016

Outline

- Spatial thinking
- Spatial ... as an enabling science
- Geospatial tools
- Data science tools
- Geospatial data
- Connecting health & place
- Enduring challenges
- Thinking outside of the box
- One final thought

- The primary task: Compare & contrast the climates of Africa
 & South America
- Used mean monthly precipitation & temperature maps
- ... tracing paper, pencils, square grids adjusted for scale, map projection
- ... a stratified, systematic sample design
- ... & spatial analysis to generate new understanding
- My final paper was organized around a series of maps, graphs & tables

The spatial sciences ...

All the ways in which location can be used to acquire, organize, analyze, model, visualize and interpret information

Spatial ... as an enabling science

Agronomy
Archaeology
Architecture
Civil Engineering
Data Science
Environmental Science
Epidemiology

Geography

Geology Hydrology

...

...

Landscape Architecture Oceanography Political Science Soil Science Zoology

Geospatial Tools – Proprietary systems

- Clark Labs
 - TerrSet Constellation
- o Esri
 - ArcGIS Platform
 - ArcGIS Online
 - Business Analyst
 - GIS Apps
- MapInfo
- Maptitude
- o Trimble
 - e-Cognition
 - TerraSync | Pathfinder

Open source solutions

- o Fulcrum
- GRASS
- o QGIS
- SAGA
- o GeoDa
- $\circ R$
- MapServer
- Open Layers
- CartoDB

Portability, Interoperability

Related computational concepts & tools

Humans Browsing the Web

- Select ontologies
 - ... that define classes and properties for our data
- Convert data to RDF
 - ... from the museum database to the ontologies
- Identify links to other Linked Data datasets
- ... to other museums and Link Data hubs

Interactive tool for rapidly extracting, cleaning, transforming, integrating & publishing linked data in multiple formats

Pedro Szekely & Craig Knoblock USC Information Sciences Institute

Web maps do something similar ...

... sensing systems

GPS Tracking

Sensors

Ecological Momentary Assessments

Schnall et al. (2013). Using text messaging to assess adolescents' health information needs: An ecological momentary assessment. Journal of Medical Internet Research 15(3): e54

Many, many geospatial datasets ...

- Physical World
 - Climate & weather
 - o Elevation
 - o Geology & soils
 - Hydrography
 - o Flora & fauna
- o Built Environment
 - Employment & commerce
 - o Housing
 - Mobility
 - Nightlights
 - Noise
 - Transportation networks

Elevation

NED
National
Elevation
Dataset

1 arc-second

1/3 arc-second

Lidar Srtm Aster

Maps courtesy of Dean Gesch

LandScan USA - Houston, TX

Utah GIS Framework Data

LA County Building Outlines

Digital Soil Geographic Databases

Nightlight | Noise

NHDPlus Version 2.1

Foundation for a Geospatial Hydrologic Framework for the United States

Slide courtesy of David Maidment

NCAR Water Research & Forecasting Model

Weather model and forecasts (HRRR)

Place-based catchment-level forecasts

Weather

Precipitation

Runoff

Land-Atmosphere Model (NOAH-MP)

Probabilistic flood forecasts

RAPID flow routing (for continental US)

Slide courtesy of David Maidment

GEOSPATIAL DATA | 16
Spatial Sciences Institute

Modeling the connections between health & place

- Need to identify the people of the place & the 'place' itself
- People are mobile & mode of travel will likely vary from one individual to next and with place & time
- Their behavior will likely vary with life stage, their journey thus far & connections with family & friends
- Need to focus on the life course of individuals as well as the social & economic trajectories of the places they inhabit (Cummins et al., 2007; Delmelle, 2016)
- Need to situate people's lives in time as well as place (Kemp, 2011)

Community Vital Signs

Incorporating geocoded social determinants into electronic records to promote patient and population health (Bazemore et al. 2015)

IOM recommended social & behavioral domains for inclusion in all EHRs

Individual level (patient reported)

Race-ethnicity

Education

Financial resource strain

Stress

Depression

Physical activity

Tobacco use & exposure

Alcohol use

Social connections & isolation

Exposure to violence (intimate partner violence)

Community-level (geocodable)

Neighborhood & community characteristics (residential address, census tract median income)

Indicators selected for ADVANCE pilot by Community VS type

Community VS	No. of indicators
Built environment	3
Environmental exposures	5
Neighborhood economic conditions	5
Neighborhood race/ethnic composition	2
Neighborhood resources	8
Neighborhood socio-economic composition	6
Social deprivation index	1

Vector World

Address Points

- Residential 134,789,944
- Commercial 13,340,398

Census Units

- Blocks 6,690,931
- Block groups 217,210
- Tracts 72,753

Road segments

- NAVTEQ 2014, Q3 30,588,582
- TIGER/Line 2015 19,531,813

ZIP codes

- 5-digit 32,989 (US CB 2015)
- 5-digit 42,000+ (incl. universities & institutions with their own ZIP codes)
- 9-digit 14,000,000

Raster World

- o 1 km 9,605,900
- o 500 m 38,231,482
- o 100 m 931,356,172
- \circ 30 m 10,249,721,719
- o 10 m 91,783,949,400
- o 3 m 1,004,369,815,663
- o 1 m 8,807,550,700,000

Impact & consequences of spatial scale ...

Durham, NC 30,319 parcels

57 BE Variables

BE Domains

Housing damage
Property disorder
Territoriality
Vacancy
Public nuisances
Crime
Tenancy

Built Environment

Four Index Construction Methods

Parcels
Census Block Groups
Primary adjacency communities
Secondary adjacency communities

Strominger, Anthopolos, & Miranda (2016) Implications of construction method and spatial scale on measures of the built environment. *International Journal of Health Geographics*, 15, 15.

Primary & secondary adjacency communities ...

Working with the American Community Survey (ACS)

Among hotspot CTs,
CTs with poor education or poor insurance coverage

Among the CTs on the left, yellow indicates poor reliability (CV>15)

Before and after aggregation (NHW)

Matthews (2011)

Spatial polygamy and the heterogeneity of place: Studying people and place

Gridded surface of total family activities or resource sites (n=222) based on 10 families in one Boston, MA neighborhood

Square grid cells measure 500 m on a side

Burton, Kemp, Leung, & Matthews (Eds.) 2011. Communities, neighborhoods, and health: Expanding the boundaries of place. Berlin, Springer

Matthews (2011)

Residential, adjacent, & non-adjacent activity domains (rank-ordered by percent of activities in nonadjacent tracts; highest to lowest)

Domain	N	Residential tract	Adjacent tract	Non-adjacent tract
Social services	22	4.55	9.09	86.36
Work	11	9.09	9.09	81.82
Nonfood shopping	22	4.55	18.18	77.27
Childcare	15	0.00	26.67	73.33
Health services	45	6.67	20.00	73.33
Education	26	7.69	19.23	73.08
Social network	18	22.22	5.56	72.22
Other services	12	0.00	33.33	66.67
Food shopping	37	5.41	29.73	64.86
Recreation	14	0.00	42.86	57.14
Totals	222	6.31	21.17	72.52

10 families; 222 unique non-home places

Spatiotemporal modeling ...

Spatiotemporal trajectories

Haislip L. (2011). An examination of utilitarian bicycle trip route choice preference in San Diego. Master of City Planning Thesis, San Diego State University.

Human activity

Parks

Raise a series of issues connected with definition & granularity of data

Coliseum, Los Angeles, CA

- Integrate the spatial sciences in health research projects from the start to the finish like we do now with biostatistics
- Shift some of our focus from problems to solutions
- Build new crosscutting academic programs to support these goals:
 - o B.S. in GeoDesign
 - Ph.D. in Population, Health & Place

St. Augustine Catholic Elementary School

Close | Questions

